
 

 

 

 

 

Random and Brownian Motion and Fractal 

Analyses 

PMATH 370 Final Project 

 

 

 

 

 

 

Michael Sutton 

  



1 
 

Abstract 

Brownian motion describes the apparently random motion of particles suspended in a fluid, 

named for Scottish botanist Robert Brown, who first observed through a microscope pollen particles 

moving erratically on the surface of otherwise still water.  On an atomic level, such motion is due to 

collisions with the molecules comprising the suspending fluid, but due to the frequency and 

unpredictable nature of these collisions, on a macroscopic level we observe essentially random motion. 

There are many useful applications in the study of such motion, from stock market models to foraging 

animal paths, and entire fields of study in particle science; the mathematics behind Brownian motion 

apply in analysis of nearly all things apparently random. 

In this paper I will scratch the surface on a few of the important and interesting results that have 

arisen from the study of random motion, with a special eye toward fractal conclusions. The field of 

mathematics spawned from the analysis of random motion is staggering, and even the most basic facts 

need dozens of calculus and statistical theorems to sort out much of the randomness that is occurring in 

the background. As such most results will simply be stated and cited for brevity, while their significance 

and relation to fractal geometry is discussed. 

 

Random Walks 

 Conceptually simpler than Brownian motion, Random Walks are a good place to start when 

examining more complex random motion. Also called a “Drunkard’s Walk,” Random Walks are a series 

of discrete steps taken on a d-Dimensional lattice.  There are interesting probabilistic conclusions that 

can be drawn dependent on number of paths and the dimension the motion takes place in. 

 Below are a few images of Random Walks, the first with a wider lattice and lower step count 

allows us to easily visualize the process, whereas the latter two show the shapes the motion takes in 

higher dimensions or with larger step counts. 

                                     

    Figure 1A-Random Walk on 2D lattice        Figure 1B-Random Walk on 3D lattice          Figure 1C-Random Walk with large step count 

 As the step size approaches zero and the number of steps increases to infinity, random walks 

begin to approximate Brownian motion. We see in Figures 1B and 1C that we begin to lose the lattice 
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and the path blends to something more chaotic motion as step size decreases, reminiscent of the 

Brownian motion we will later observe. 

On a one dimensional lattice, the distance from the origin takes a Gaussian distribution when 

considered as a random variable, so this gives us the idea that in lower dimensions Random Walks will 

tend toward their origin, which explains why as the step count increases we will almost always observe 

fully saturated portions of the lattice – the dark areas in Figures 2 and 3 above. This idea is important in 

later sections – when we observe at the Hausdorff Dimension of Brownian motion, consider the 

approximation as a random walk on an infinitely dense lattice. On the tendencies of random walks to 

their origin, the following section will discuss the probabilities of random walks returning to their 

origination point and related mathematical constants. 

 

Pólya's Random Walk Constants 

 Hungarian Mathematician George Pólya derived the probabilistic constants      defined as the 

probability an infinite random walk on a d-Dimensional lattice will return to the origin. 

In 1921, Pólya demonstrated that            , and furthermore that        for    . 

It’s an intriguing result that an infinite random walk in 1 or 2 dimensions will always return to the origin. 

It was not until 1939 that G.N. Watson showed  

       
 

    
           

Where      is the third Watson Triple Integral, modulo a multiplicative constant: 

     
 

     
   

        

                 
          

 

  

 

  

 

  

  

A table of Pólya constants for dimensions 3 through 8 can be seen below: 

       
3 0.340537 

4 0.193206 

5 0.135178 

6 0.104715 

7 0.0858449 

8 0.0729126 

 

The 2-Dimensional random walk is often interpreted as a drunken man wandering a city, the 

namesake of the Drunkard’s Walk. At each intersection, the man will pick a random direction to travel 

(including the possibility of doubling back). Pólya’s constants above tell us that should the man wander 
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for long enough, he will eventually end up back where he started. Piloting a helicopter, though, said 

drunken man may become lost – not to mention the consequences of the z-axis value dropping below 0. 

 

Brownian Motion 

It was not until 1905 that Albert Einstein created the physics theories behind Brownian motion, 

describing the buffeting of a suspended particle in stationary liquid by the surrounding molecules. Since 

these particles undergo somewhere around      collisions per second, the calculations involved the 

density of Brownian particles, diffusion constant D, and moment of inertia at time   in the Brownian 

motion. His work describing such motion laid the groundwork for much of molecular-kinetic theory. 

Allegedly Einstein wasn’t even aware of Brown’s work until nearing the 1905 publication of On the 

movement of small particles suspended in a stationary fluid as demanded by the laws of kinetic theory. 

Einstein’s formula for mean square distance as a function of time   was: 

    
   

 

 

    
 

Where   is time,   is gas constant,   is temperature,   is Avogadro’s Number,   is viscosity, and   is 

particle radius.  

Though the physics behind Brownian motion raises some interesting problems, we will be 

sticking to a mathematical definition of the random motion, which in some ways is even more chaotic 

than that described by Einstein. Einstein’s calculations involved inertia and momentum, meaning that 

aside from at initialization, the current state of the particle affects its future trajectory. For our purposes, 

though, we will be using a stochastic process known as the Wiener Process to define Brownian motion 

as a function of  : 

For an interval         or      , we define         to be Standard Brownian motion if it is a Gaussian 

process satisfying the following conditions: 

i.      

ii.        where    ,       and    are independent 

iii.     ,           

iv.      is continuous on  . 

The process was developed by American Mathematician Norbert Wiener in 1923, after he had taken 

a keen interest in Brownian motion as described in Einstein’s works. The Wiener Process quickly became 

synonymous with Brownian motion, and is used as the primary model for the motion. 

Lévy proved in 1948 that Standard Brownian motion could be defined on         - previously a 

conjecture by Wiener in 1923, giving us the chance to consider infinite Brownian paths satisfying the 

above properties. 
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Brownian Motion Basic Properties 

Brownian motion generated by the Wiener process is nowhere differentiable and has no intervals of 

monotonocity.  

Consider        , Brownian motion from    . Each of the following is also Brownian motion: 

       
 

 
     

   
  and    

 

      
   

   (scaling) 

                       (shifting) 

For            

 

               (inversion) 

The scaling property, specifically, describes a fractal nature of the Wiener process, no matter how 

much we stretch or compress the process, the result is still Brownian motion. This, combined with the 

fact that there are no intervals of monotonocity, gives us the infinitely detailed and self-copying 

properties that define many fractal shapes. 

Additionally, relating to how fast Brownian motion will travel from the origin, we have the following 

limits: 

   
   

  

 
                   

   

  

  
                 

   

  

  
    

And the expected value         

This tells us a bit about the rate at which the boundary of Brownian motion grows, and we’ll revisit 

said boundaries later. 

 

Brownian Paths and Collisions 

When considering a Brownian path – the trace left from a single walker performing Brownian 

motion – we can use a fractal Cantor-like analysis to show how multiple Brownian paths will collide or 

avoid each other in different dimensions. 

In   , any number of Brownian  paths intersect with positive probability. In   , two paths 

intersect with positive probability, but no more than two. In higher dimensions, no two paths intersect 

with positive probability. These mathematical theorems come from Dvoretsky, Erdõs, Kakutani and 

Taylor in the 1950’s, and the construction that leads to these conclusions is a random Cantor-like 

division of       . 
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For example, take    , and the construction is as follows: 

Divide        into 8  
 

 
 

 

 
 

 

 
 cubes, and retain each cube with probability  

 

 
. Repeat this 

process with each cube kept in the first iteration. Since the expected number of cubes to keep in a single 

iteration from a single cube is 4, we don’t expect any iteration to be empty. 

Define     
 

 
  to be the intersection of these iterations. If   is a closed subset of        and 

            Brownian motion, where          , chosen uniformly, then it can be shown that for some 

positive constants    and   , that: 

        
 

 
                                     

 

 
       

Where   is the usual probability function. We can then reduce the problem of finding an 

intersection between two Brownian paths to finding the intersection between two     
 

 
  sets, which 

will be of the form     
 

 
  - we keep any of the 8 child cubes with probability  

 

 
. Since the expected 

number of child cubes in an iteration is 2, we observe that       
 

 
      , but for 3 paths, when 

we’re looking at     
 

 
 , the expected number of children from any single cube is 1, and we experience 

a “die-off” of the branches, wherein we observe     
 

 
    with probability 1, and the result for 3 or 

more Brownian paths intersecting in    follows. 

 It is a curious result to consider that Brownian paths in    and higher dimensions will never 

intersect. Conceptually, one might envision two random paths crossing in any dimension, but the fact 

remains that the probability of such an event in higher dimensions is zero. This is one of the quirks of 

probabilistic results with non-discrete distributions. Though we can point a particular occurrence, the 

probability of that event may well be zero. You can consider picking a number at random on the interval 

     , but for any given         the probability that this particular number was picked is 0, since there 

are infinite equally probable results. 

 

Brownian Paths Hausdorff Dimension 

 Consider Brownian motion         on the plane in   . The outer boundary of this motion is 

called the “frontier” of the Brownian motion.  

 A Brownian Path itself has a fractal dimension of 2, meaning there will always be space-filling for 

some open set in   , which of itself is a curious result related to the nowhere differentiable, yet 

continuous properties of Brownian motion; a Brownian path crosses itself infinitely often in    and   , 

and in no dimension does the motion have any interval of monotonocity. This means macroscopically, 

though we see a continuous path we can follow visually, as we consider smaller and smaller intervals in 

the motion we will still find infinite self-intersection, creating a 2-dimensional shape rather than 1-
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dimensional path. Reflecting back on the infinitely dense lattice Random Walk approximation, we see 

that a fully-saturated infinitely dense lattice is space-filling. 

 It was first conjectured by Mandelbrot in 1982 that the fractal dimension of this frontier for 

           , hereafter referred to as       , is  
 

 
 . This was later proved to be true by Lawler, Schramm, 

and Werner in 2000. 

 

Figure 2 - A Brownian path and its boundary 

Other relevant fractal dimensions when considering a single Brownian path are those of cut 

points and pioneer points. Cut points are points where    where                , and they have 

Hausdorff dimension 
 

 
 for         A pioneer point is a point    that lies on the frontier at time s, and the 

Hausdorff dimension of the set of pioneer points for        is 
 

 
. 

 Of special note is that these dimensions are deterministic. Out of motion whose basis is almost 

entirely random, we get totally deterministic dimensions of these three sets of points. 

 

Brownian Trees 

 Brownian trees, or Diffusion Limited Aggregates (DLA), are formed by particles following 

Brownian motion called “walkers” and a single or group of seed particles. When a walker contacts the 

seed structure, it incorporates itself and the seed structure grows. This is a natural phenomenon called 

“diffusion-limited aggregation” wherein accumulation in systems where diffusion is the form of 

transportation (fluid suspension) aggregation of particles form these Brownian Tree structures – 

observable in many crystallization and precipitation processes. 

Unlike Brownian motion, not much about Brownian trees is deterministic, so far as has been 

concluded. The average Hausdorff dimension of a Brownian tree in    is 1.7, a measured average. 

 Pending other limiting or guiding structures in the environment, the process leads to some 

astounding fractal-like shapes. 
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Figure 3 - Copper Aggregate from Solution (left), Manganese Dendrites (right) 

 Among the many other fractals observed in the natural world, Brownian Trees stand out as 

being the result of a process with a high degree of randomization. From crystals to clouds and oil spills, 

the study of DFA gives us insight to the shapes these objects will take, and why they take on these 

peculiar shapes. 

 Take, for example, a cloud. At first the formulation of a cloud might seem far-removed from 

processes like crystallization, but when we consider the mechanism behind them, we draw many 

parallels: Water particles (walkers) precipitating from the air (suspending fluid) and accumulating into 

clouds (seed structures). The primary difference between this and solid precipitation processes being 

that the seed structure is not rigid. 

 Brownian trees are surprisingly simple to simulate programmatically, keeping in mind that the 

base process only requires a simulation of Brownian motion that terminates upon contacting the seed 

structure. Brownian motion is often approximated programmatically by the approximation mentioned 

near the beginning of this paper – a random walk with a miniscule step size and a large number of steps, 

utilizing pseudorandom number generation to dictate the direction taken at each step. Below are two 

Brownian trees generated by a brief bit of Java code that can be found in the appendix. 

   

Figure 4 - Brownian Tree Simulations – 30000 walkers (left) and 20000 walkers (right) 

 

 The code can be tweaked in ways that let us observe different properties of Brownian trees. For 

example, if we colour code based on when a walker enters the tree. 
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Figure 5 - Brownian tree colour-coded simulation 

We may also add boundaries limiting the possible motion of the walkers: 

    

Figure 6 - Brownian trees with lower boundary (left) and helical boundary (right) 

Again, these simulations give us some insight into the natural processes they model, as different 

constraints can arise from different environmental factors, such as crystal growth constrained to a 

fissure the surrounding rock, and we can immediately see a striking resemblance between even the 

simple simulations and the natural processes they model.  

 

Conclusion 

 From sticky stochastic processes simulating random motion to beautiful crystalline shapes 

growing in solution, Brownian motion shapes our world on many levels. The very building blocks of our 

universe are chaotic and unpredictable by nature, as a certain Scottish botanist began to grasp watching 

pollen dance on the surface of placid water. Sitting on that surface, every immeasurable fraction of a 

sliver of a second billions of collisions take place – more data than any computational engine can hope 

to process. Since the famous observations of Robert Brown, many giants of Mathematics and Physics 

have brought some order to the chaos, giving us constants and theorems and constructions that help us 

analyze random motion, and their conclusions have made ripples in many important fields that deal with 
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unpredictability. It still remains though, no matter how many numbers we’ve found to describe the path 

it will follow, we will never know the direction that speck of pollen will dart next. 
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Appendix 
 

Code used to generate DLA trees in Figure 5. 

Source: http://rosettacode.org/wiki/Brownian_tree 

 
import java.awt.Graphics; 
 import java.awt.image.BufferedImage; 
 import java.util.*; 
 import javax.swing.JFrame; 
   
 public class BrownianTree extends JFrame implements Runnable { 
   
     BufferedImage I; 
     private List<Particle> particles; 
     static Random rand = new Random(); 
   
     public BrownianTree() { 
         super("Brownian Tree"); 
         setBounds(100, 100, 400, 300); 
         setDefaultCloseOperation(EXIT_ON_CLOSE); 
         I = new BufferedImage(getWidth(), getHeight(), 
BufferedImage.TYPE_INT_RGB); 
         I.setRGB(I.getWidth() / 2, I.getHeight() / 2, 0xff00); 
         particles = new LinkedList<Particle>(); 
     } 
   
     @Override 
     public void paint(Graphics g) { 
         g.drawImage(I, 0, 0, this); 
     } 
   
     public void run() { 
         for (int i = 0; i < 20000; i++) { 
             particles.add(new Particle()); 
         } 
         while (!particles.isEmpty()) { 
             for (Iterator<Particle> it = particles.iterator(); it.hasNext();) { 
                 if (it.next().move()) { 
                     it.remove(); 
                 } 
             } 
             repaint(); 
         } 
     } 
   
     public static void main(String[] args) { 
         BrownianTree b = new BrownianTree(); 
         b.setVisible(true); 
         new Thread(b).start(); 
     } 
   
     private class Particle { 
   
         private int x, y; 
   
         private Particle() { 
             x = rand.nextInt(I.getWidth()); 
             y = rand.nextInt(I.getHeight()); 
         } 

http://rosettacode.org/wiki/Brownian_tree
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         /* returns true if either out of bounds or collided with tree */ 
         private boolean move() { 
             int dx = rand.nextInt(3) - 1; 
             int dy = rand.nextInt(3) - 1; 
             if ((x + dx < 0) || (y + dy < 0) 
                     || (y + dy >= I.getHeight()) || (x + dx >=  I.getWidth())) 
{ 
                 return true; 
             } 
             x += dx; 
             y += dy; 
             if ((I.getRGB(x, y) & 0xff00) == 0xff00) { 
                 I.setRGB(x - dx, y - dy, 0xff00); 
                 return true; 
             } 
             return false; 
         } 
     } 
 } 


