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Abstract 
 

This paper aims to provide an introduction to creating fractal landscapes.  I will present 

some methods for generating landscapes.  In order to help the reader better understand 

the methods presented I will discuss the properties of real landscapes that make them 

fractals. 

 

I will describe three algorithms for generating fractal landscapes.  I will compare them 

based on the characteristics of the landscapes they produce.  I will also discuss some 

useful modifications and extensions to the algorithms discussed. 

 

 

An Introduction to Fractal Landscapes 
 

This paper discusses algorithms that are used to create artificial landscapes.  The goal in 

generating fractal landscapes is to make them look as realistic as possible.  A generated 

landscape can be made quite realistic by adding colour, proper lighting, water, plants, 

atmospheric effects and other such things.  This paper focuses on the process of creating 

the topological form of the landscape. 

 

The output of the algorithms discussed is a set of altitudes assigned to a two-dimensional 

grid.  Inputs into the algorithms are parameters that define certain desired characteristics 

of the generated landscape, mainly its roughness. 

 

The algorithms must use randomness otherwise we would not have interesting or unique 

results.  Simply assigning a random altitude to each point in our grid won’t do because 



we expect that two points that are close to each other are likely to have similar altitudes.  

So we need an algorithm that will take into account the proximity of two points in 

assigning their altitude.  To understand the fractal landscape algorithms, we must first 

understand why a real landscape is a fractal. 

 

Firstly, landscapes are self-similar.  They are not self-similar in the sense that looking at a 

small portion of the landscape, you will see the same shape that you see looking at the 

entire landscape.  Looking at a landscape at different scales, though, you will notice that 

it exhibits the same basic characteristics at every scale.  Consider a mountainous terrain, 

each mountain likely has several peaks.  Think of these peaks as being the result of a 

smaller mountainous terrain imposed on top of one mountain in the larger terrain.  

Further, each of these peaks contains more peaks but on a smaller scale.  It is in this sense 

that landscapes are self-similar. 

 

The characteristic that allows us to define landscapes as fractals is the fact that they have 

fractional dimensions.  In 1967, Benoit Mandelbrot coined the popular question: “How 

long is the coast of Britain?”  The answer is not as simple as it may appear.  A 

measurement of the length of the coastline would depend entirely on the scale of the 

measurement device used.  If you were to measure the coastline one kilometer at a time, 

you may think it would yield a reasonably accurate measurement.  But you would have 

been ignoring all the rough detail within each kilometer.  You would find that taking a 

meter stick and measuring the coastline one meter at a time would yield a far greater 

result.  In fact, every measurement using a smaller scale would yield a greater result, 

without limit.  The answer to the question is that the coastline of Britain does not have a 

length because it is not one-dimensional.  It is a fractal. 

 

The algorithms that will be examined make use of the fractal properties of landscapes in 

converting random numbers into landscapes.  Three algorithms are examined.  The 

Triangle Division and Diamond-Square algorithms use iterative processes.  They take 

advantage of the self-similarity property by applying the same rule to the landscape at a 

smaller scale with each iteration.  The random numbers are used to perturb the altitude, 



creating random landscape-like features.  The Fourier Transform algorithm uses discrete 

Fourier transforms to represent a landscape in the frequency domain.  By moulding the 

frequencies, this algorithm can convert a set of random numbers into a landscape.  Also 

discussed are a couple ways to achieve certain characteristics in the landscapes using the 

previous algorithms. 

 

 

Triangle Division Algorithm 
 

The Triangle Division algorithm takes a triangle-shaped terrain, and at each iteration 

divides each triangle into four smaller triangles, applying a random perturbation to each 

new vertex created. 

 

1. Start with a triangle.  Pick random altitudes for the endpoints. 

2. For each edge on the triangle, take the midpoint and add a random perturbation.  

The perturbation is equally distributed between –k
r
 and k

r
, where k is the length of 

the divided edge and r is a roughness parameter. 

3. Divide the triangle into 4 smaller triangles by connecting the midpoints, then 

repeat the process on each of the smaller triangles. 

 

The process is iterated until the desired amount of detail is reached.  Notice that at each 

iteration the random perturbations are dependent on the size of the triangles at that 

iteration, so the amount of perturbation becomes smaller with every iteration.  This 

property makes the generated object landscape-like.  The fact that the same process is 

applied to the landscape but at a smaller scale each time makes it self-similar or fractal. 

 

This algorithm has a roughness parameter (r) which gives some control over the resulting 

landscape.  Notice that with higher r, the perturbation decreases more quickly after each 

iteration than with lower r.  So with relatively high r, the perturbations become relatively 

small at high levels of detail.  The result is a smooth landscape.  Conversely, a low value 

of r will result in a rough landscape.  Therefore, r is called the roughness parameter. 



 

Below are two landscapes using the triangle division algorithm.  The algorithm can be 

applied to a square grid by dividing the square along a diagonal, creating two triangles. 

 

 

Figure 1 - Triangle Division r = 1.0 

  

 

Figure 2 - Triangle Division r = 1.5 

 

Notice that using a higher value for r produces a much smother landscape. 

 

An apparent flaw in this algorithm is the forming of ridges along the edges of the 

triangles.  This is more obvious in the smoother landscape, but notice in Figure 1 there is 

a ridge that forms along the main diagonal.  This is a result of the geometry of the 

algorithm.  Ideally, a fractal landscape would have no artificial forms such as this.  The 

reason these ridges appear is because the altitude of each point is determined from only 

two other points, so it is dependent on points in two opposite directions, but not in any 

other direction. 

 

 

Diamond-Square Algorithm 
 

The Diamond-Square algorithm improves upon the flaw pointed out in the Triangle 

Division algorithm, by having each point depend on points in four directions rather than 

two.  The algorithm is as follows: 

 



1. Assign random altitudes to the four corners of a grid. 

2. Diamond step: Average the four corners and add a random perturbation evenly 

distributed between –r
i
 and r

i
.  Assign this to the midpoint of the four corners. 

3. Square step: For each diamond produced, average the four corners and add a 

random perturbation with the same distribution. 

4. Repeat steps 2 and 3 for the desired number of iterations 

 

The value r is a roughness parameter, and i is the current iteration.  The following 

diagrams illustrate the points computed in the diamond and square steps of the first two 

iterations: 

 

 

Step 1  

 

Diamond - 1 

 

Square - 1 

 

Diamond - 2 

 

Square - 2 

 

Notice that this algorithm uses a different computation to determine perturbations as was 

used in the Triangle Division algorithm.  Here the random numbers are scaled by a factor 

of r
i
, compared to k

r
 in the other algorithm, where k is the side-length of a triangle or 

square.  The two methods are, in fact, equivalent.  Notice that the side-length of a triangle 

or square in either algorithm is halved at each iteration, so k = (½)
i
 and k

r
 = (½)

ri
, which 

is equal to using r’
i
 where r’ = (½)

r
.  The main difference is that in this algorithm, 

increasing r increases roughness. 

 

Here are two fractal landscapes generated by using the Diamond-Square algorithm: 



 

Figure 3 - Diamond-Square r = 0.4 

 

Figure 4 - Diamond-Square r = 0.6 

 

There aren’t any ridges such as those that appeared using the Triangle Division 

algorithm, but you can see on the smother landscape there are small peaks or troths along 

the major gridlines.  This is better than the previous algorithm, but we still do not have a 

truly random fractal landscape. 

 

A possible improvement upon this algorithm would be to use a cubic spline interpolation 

for each point, or some other non-linear interpolation method rather than the linear 

interpolation that is used here.  This could help smooth out the peaks and troths that are 

formed by taking into account very many other points rather than just the four closest 

points in interpolation.  An algorithm using cubic splines is not explored in this paper. 

 

 

Fourier Transform Algorithm 
 

A Fourier transform is based on the idea that a function can be expressed as a sum of sine 

or cosine waves at different frequencies.  The Fourier transform expresses a function in 

this form; it converts the function to its frequency domain. 

 

A Discrete Fourier Transform (DFT) is a Fourier Transform applied to a set of discrete 

values.  The result is a set of discrete complex numbers of the same size as the original 

set.  The resulting values can be thought of as amplitudes of various frequencies in the 



original set.  The process can be reversed without any change to the original set.  A DFT 

can be performed in O(n·log(n)) using a Fast Fourier Transform (FFT) algorithm making 

it a reasonably efficient process.  A DFT can also be applied to multiple dimensions. 

 

The idea of a Fourier Transform ties into fractal landscapes by thinking of a landscape as 

a sum of waves at different frequencies.  Observe that the amplitude of these waves has a 

decreasing trend as the frequency increases.  This is essentially the same as the 

observation used in the previous algorithms that the size of perturbations should decrease 

as the scale at which they are being applied decreases. 

 

The Fourier Transform Algorithm is quite different from the previous algorithms 

discussed, mainly because it is not an iterative process.  At a high level it is quite simple: 

 

1. Create a 2-dimentional grid of random values. 

2. Apply a 2-dimentional FFT. 

3. Scale each of the values in the transform by 1/f
r
, where f is the frequency 

represented by that value, and r is the roughness parameter. 

4. Apply the inverse FFT.  The result is a fractal landscape. 

 

The resulting fractal landscape does not contain any artificial ridges or peaks as the 

previous algorithms did.  In addition, the landscape has the interesting (and sometimes 

desirable) property that it can be tiled.  One side of the landscape flows perfectly into the 

opposite side. 

 



 

Figure 5 – Fourier  r = 2.5 

 

Figure 6 – Fourier  r = 2.0 - tiled 

 

 

Multiplication Technique 
 

At this point it is important to think about how realistic the landscapes generated by the 

previous algorithms really are.  In the landscapes they generate, both the valleys and 

peaks contain the same characteristics at the small scale.  But is this truly what we want 

from our fractal landscapes? 

 

In the real world the valleys are, in fact, much smother than the peaks.  This is the result 

of erosion.  The erosion process takes material from higher altitudes and settles it in the 

valleys, making them smother.  There would also be rivers, which is a form that does not 

occur using any of the algorithms discussed. 

 

A common solution to this problem is to simulate the erosion process.  This is a topic 

beyond the scope of this paper.  You could consider modifying the Triangle Division or 

Diamond-Square algorithms to take the interpolated altitude into account when 

determining the random perturbation.  This would help to solve the problem of smother 

valleys vs. rougher peaks. 

 

A quick and easy solution is to multiply two landscapes together.  Generate two 

landscapes with altitudes between 0 and 1, then multiply the corresponding altitudes 



together to create a new landscape.  All altitudes will be scaled down, but the lower ones 

more than the higher ones, making the terrain features at high altitudes more exaggerated 

relative to the features at low altitudes.  The result is smother valleys and rougher peaks, 

as desired. 

 

The following two landscapes were created by generating two fractal landscapes, scaling 

them so that the altitudes lie between 0 and 1, then multiplying them together.  The first 

uses the Diamond-Square algorithm, and the second uses the Fourier Transform 

algorithm. 

 

 

Figure 7 – DiamondSquare
2
  r = 0.4, 0.5 

 

Figure 8 - Fourier
2
  r = 1.7, 2.5 

 

 

Modifying the Fourier Transform Algorithm 
 

The underlying idea behind the Fourier Transform algorithm is that by taking a set of 

random numbers, we can scale down the higher frequencies to create a landscape.  The 

curious mathematician would wonder what other sorts of rules can be applied while in the 

frequency domain to alter the characteristics of the landscape. 

 

An interesting and useful result is achieved by scaling down the frequencies by a larger 

amount in one direction than the other.  The resulting features are skewed in one 

direction, similar to the way mountain ranges typically form in a line.  Figure 9 was 



generated by scaling the frequencies down in one direction by twice the scaling factor.  

Figure 10 was generated by combining this method with the multiplication technique. 

 

 

 

Figure 9 - Skewed Fourier 

 

Figure 10 - Skewed Fourier
2
 

 

 

Conclusions 
 

We have examined three algorithms for generating fractal landscapes.  The Triangle 

Division and Diamond-Square algorithms are very similar.  Both algorithms produce 

unnatural forms in the generated landscape, the Diamond-Square being an improvement 

upon the Triangle Division algorithm because the computation of each point is dependent 

upon four, rather than two, nearby points.  The Fourier Transform algorithm takes 

advantage of the observation that frequencies can be used to describe a natural landscape.  

It has the property that a generated landscape can be tiled.  It can also be modified to 

create mountain range-like landscapes. 

 

The landscapes generated by the algorithms described fail to mimic certain characteristics 

of real landscapes.  An easy way to create a more realistic fractal landscape is to multiply 

two generated landscapes together, creating smoother valleys and rougher peaks.  More 

advanced methods exist to convert a generated landscape into a realistic landscape such 



as simulating the erosion process.  The algorithms discussed here provide an introduction 

to generating realistic landscapes. 
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