
Algorithms for Generating Fractal Landscapes

Keith Stanger

December 7, 2006

Abstract

This paper aims to provide an introduction to creating fractal landscapes. I will present

some methods for generating landscapes. In order to help the reader better understand

the methods presented I will discuss the properties of real landscapes that make them

fractals.

I will describe three algorithms for generating fractal landscapes. I will compare them

based on the characteristics of the landscapes they produce. I will also discuss some

useful modifications and extensions to the algorithms discussed.

An Introduction to Fractal Landscapes

This paper discusses algorithms that are used to create artificial landscapes. The goal in

generating fractal landscapes is to make them look as realistic as possible. A generated

landscape can be made quite realistic by adding colour, proper lighting, water, plants,

atmospheric effects and other such things. This paper focuses on the process of creating

the topological form of the landscape.

The output of the algorithms discussed is a set of altitudes assigned to a two-dimensional

grid. Inputs into the algorithms are parameters that define certain desired characteristics

of the generated landscape, mainly its roughness.

The algorithms must use randomness otherwise we would not have interesting or unique

results. Simply assigning a random altitude to each point in our grid won’t do because

we expect that two points that are close to each other are likely to have similar altitudes.

So we need an algorithm that will take into account the proximity of two points in

assigning their altitude. To understand the fractal landscape algorithms, we must first

understand why a real landscape is a fractal.

Firstly, landscapes are self-similar. They are not self-similar in the sense that looking at a

small portion of the landscape, you will see the same shape that you see looking at the

entire landscape. Looking at a landscape at different scales, though, you will notice that

it exhibits the same basic characteristics at every scale. Consider a mountainous terrain,

each mountain likely has several peaks. Think of these peaks as being the result of a

smaller mountainous terrain imposed on top of one mountain in the larger terrain.

Further, each of these peaks contains more peaks but on a smaller scale. It is in this sense

that landscapes are self-similar.

The characteristic that allows us to define landscapes as fractals is the fact that they have

fractional dimensions. In 1967, Benoit Mandelbrot coined the popular question: “How

long is the coast of Britain?” The answer is not as simple as it may appear. A

measurement of the length of the coastline would depend entirely on the scale of the

measurement device used. If you were to measure the coastline one kilometer at a time,

you may think it would yield a reasonably accurate measurement. But you would have

been ignoring all the rough detail within each kilometer. You would find that taking a

meter stick and measuring the coastline one meter at a time would yield a far greater

result. In fact, every measurement using a smaller scale would yield a greater result,

without limit. The answer to the question is that the coastline of Britain does not have a

length because it is not one-dimensional. It is a fractal.

The algorithms that will be examined make use of the fractal properties of landscapes in

converting random numbers into landscapes. Three algorithms are examined. The

Triangle Division and Diamond-Square algorithms use iterative processes. They take

advantage of the self-similarity property by applying the same rule to the landscape at a

smaller scale with each iteration. The random numbers are used to perturb the altitude,

creating random landscape-like features. The Fourier Transform algorithm uses discrete

Fourier transforms to represent a landscape in the frequency domain. By moulding the

frequencies, this algorithm can convert a set of random numbers into a landscape. Also

discussed are a couple ways to achieve certain characteristics in the landscapes using the

previous algorithms.

Triangle Division Algorithm

The Triangle Division algorithm takes a triangle-shaped terrain, and at each iteration

divides each triangle into four smaller triangles, applying a random perturbation to each

new vertex created.

1. Start with a triangle. Pick random altitudes for the endpoints.

2. For each edge on the triangle, take the midpoint and add a random perturbation.

The perturbation is equally distributed between –k
r
 and k

r
, where k is the length of

the divided edge and r is a roughness parameter.

3. Divide the triangle into 4 smaller triangles by connecting the midpoints, then

repeat the process on each of the smaller triangles.

The process is iterated until the desired amount of detail is reached. Notice that at each

iteration the random perturbations are dependent on the size of the triangles at that

iteration, so the amount of perturbation becomes smaller with every iteration. This

property makes the generated object landscape-like. The fact that the same process is

applied to the landscape but at a smaller scale each time makes it self-similar or fractal.

This algorithm has a roughness parameter (r) which gives some control over the resulting

landscape. Notice that with higher r, the perturbation decreases more quickly after each

iteration than with lower r. So with relatively high r, the perturbations become relatively

small at high levels of detail. The result is a smooth landscape. Conversely, a low value

of r will result in a rough landscape. Therefore, r is called the roughness parameter.

Below are two landscapes using the triangle division algorithm. The algorithm can be

applied to a square grid by dividing the square along a diagonal, creating two triangles.

Figure 1 - Triangle Division r = 1.0

Figure 2 - Triangle Division r = 1.5

Notice that using a higher value for r produces a much smother landscape.

An apparent flaw in this algorithm is the forming of ridges along the edges of the

triangles. This is more obvious in the smoother landscape, but notice in Figure 1 there is

a ridge that forms along the main diagonal. This is a result of the geometry of the

algorithm. Ideally, a fractal landscape would have no artificial forms such as this. The

reason these ridges appear is because the altitude of each point is determined from only

two other points, so it is dependent on points in two opposite directions, but not in any

other direction.

Diamond-Square Algorithm

The Diamond-Square algorithm improves upon the flaw pointed out in the Triangle

Division algorithm, by having each point depend on points in four directions rather than

two. The algorithm is as follows:

1. Assign random altitudes to the four corners of a grid.

2. Diamond step: Average the four corners and add a random perturbation evenly

distributed between –r
i
 and r

i
. Assign this to the midpoint of the four corners.

3. Square step: For each diamond produced, average the four corners and add a

random perturbation with the same distribution.

4. Repeat steps 2 and 3 for the desired number of iterations

The value r is a roughness parameter, and i is the current iteration. The following

diagrams illustrate the points computed in the diamond and square steps of the first two

iterations:

Step 1

Diamond - 1

Square - 1

Diamond - 2

Square - 2

Notice that this algorithm uses a different computation to determine perturbations as was

used in the Triangle Division algorithm. Here the random numbers are scaled by a factor

of r
i
, compared to k

r
 in the other algorithm, where k is the side-length of a triangle or

square. The two methods are, in fact, equivalent. Notice that the side-length of a triangle

or square in either algorithm is halved at each iteration, so k = (½)
i
 and k

r
 = (½)

ri
, which

is equal to using r’
i
 where r’ = (½)

r
. The main difference is that in this algorithm,

increasing r increases roughness.

Here are two fractal landscapes generated by using the Diamond-Square algorithm:

Figure 3 - Diamond-Square r = 0.4

Figure 4 - Diamond-Square r = 0.6

There aren’t any ridges such as those that appeared using the Triangle Division

algorithm, but you can see on the smother landscape there are small peaks or troths along

the major gridlines. This is better than the previous algorithm, but we still do not have a

truly random fractal landscape.

A possible improvement upon this algorithm would be to use a cubic spline interpolation

for each point, or some other non-linear interpolation method rather than the linear

interpolation that is used here. This could help smooth out the peaks and troths that are

formed by taking into account very many other points rather than just the four closest

points in interpolation. An algorithm using cubic splines is not explored in this paper.

Fourier Transform Algorithm

A Fourier transform is based on the idea that a function can be expressed as a sum of sine

or cosine waves at different frequencies. The Fourier transform expresses a function in

this form; it converts the function to its frequency domain.

A Discrete Fourier Transform (DFT) is a Fourier Transform applied to a set of discrete

values. The result is a set of discrete complex numbers of the same size as the original

set. The resulting values can be thought of as amplitudes of various frequencies in the

original set. The process can be reversed without any change to the original set. A DFT

can be performed in O(n·log(n)) using a Fast Fourier Transform (FFT) algorithm making

it a reasonably efficient process. A DFT can also be applied to multiple dimensions.

The idea of a Fourier Transform ties into fractal landscapes by thinking of a landscape as

a sum of waves at different frequencies. Observe that the amplitude of these waves has a

decreasing trend as the frequency increases. This is essentially the same as the

observation used in the previous algorithms that the size of perturbations should decrease

as the scale at which they are being applied decreases.

The Fourier Transform Algorithm is quite different from the previous algorithms

discussed, mainly because it is not an iterative process. At a high level it is quite simple:

1. Create a 2-dimentional grid of random values.

2. Apply a 2-dimentional FFT.

3. Scale each of the values in the transform by 1/f
r
, where f is the frequency

represented by that value, and r is the roughness parameter.

4. Apply the inverse FFT. The result is a fractal landscape.

The resulting fractal landscape does not contain any artificial ridges or peaks as the

previous algorithms did. In addition, the landscape has the interesting (and sometimes

desirable) property that it can be tiled. One side of the landscape flows perfectly into the

opposite side.

Figure 5 – Fourier r = 2.5

Figure 6 – Fourier r = 2.0 - tiled

Multiplication Technique

At this point it is important to think about how realistic the landscapes generated by the

previous algorithms really are. In the landscapes they generate, both the valleys and

peaks contain the same characteristics at the small scale. But is this truly what we want

from our fractal landscapes?

In the real world the valleys are, in fact, much smother than the peaks. This is the result

of erosion. The erosion process takes material from higher altitudes and settles it in the

valleys, making them smother. There would also be rivers, which is a form that does not

occur using any of the algorithms discussed.

A common solution to this problem is to simulate the erosion process. This is a topic

beyond the scope of this paper. You could consider modifying the Triangle Division or

Diamond-Square algorithms to take the interpolated altitude into account when

determining the random perturbation. This would help to solve the problem of smother

valleys vs. rougher peaks.

A quick and easy solution is to multiply two landscapes together. Generate two

landscapes with altitudes between 0 and 1, then multiply the corresponding altitudes

together to create a new landscape. All altitudes will be scaled down, but the lower ones

more than the higher ones, making the terrain features at high altitudes more exaggerated

relative to the features at low altitudes. The result is smother valleys and rougher peaks,

as desired.

The following two landscapes were created by generating two fractal landscapes, scaling

them so that the altitudes lie between 0 and 1, then multiplying them together. The first

uses the Diamond-Square algorithm, and the second uses the Fourier Transform

algorithm.

Figure 7 – DiamondSquare
2
 r = 0.4, 0.5

Figure 8 - Fourier
2
 r = 1.7, 2.5

Modifying the Fourier Transform Algorithm

The underlying idea behind the Fourier Transform algorithm is that by taking a set of

random numbers, we can scale down the higher frequencies to create a landscape. The

curious mathematician would wonder what other sorts of rules can be applied while in the

frequency domain to alter the characteristics of the landscape.

An interesting and useful result is achieved by scaling down the frequencies by a larger

amount in one direction than the other. The resulting features are skewed in one

direction, similar to the way mountain ranges typically form in a line. Figure 9 was

generated by scaling the frequencies down in one direction by twice the scaling factor.

Figure 10 was generated by combining this method with the multiplication technique.

Figure 9 - Skewed Fourier

Figure 10 - Skewed Fourier
2

Conclusions

We have examined three algorithms for generating fractal landscapes. The Triangle

Division and Diamond-Square algorithms are very similar. Both algorithms produce

unnatural forms in the generated landscape, the Diamond-Square being an improvement

upon the Triangle Division algorithm because the computation of each point is dependent

upon four, rather than two, nearby points. The Fourier Transform algorithm takes

advantage of the observation that frequencies can be used to describe a natural landscape.

It has the property that a generated landscape can be tiled. It can also be modified to

create mountain range-like landscapes.

The landscapes generated by the algorithms described fail to mimic certain characteristics

of real landscapes. An easy way to create a more realistic fractal landscape is to multiply

two generated landscapes together, creating smoother valleys and rougher peaks. More

advanced methods exist to convert a generated landscape into a realistic landscape such

as simulating the erosion process. The algorithms discussed here provide an introduction

to generating realistic landscapes.

Acknowledgements

Landscape Images used in this paper were rendered using source code downloaded from

JavaWorld.com (see Works Cited). Code for generating the landscapes, with the

exception of the basic Diamond-Square, is originally written.

Works Cited

Bourke, Paul. “Frequency Synthesis of Landscapes (and Clouds).” March 1997.

<http://local.wasp.uwa.edu.au/~pbourke/modelling/planets/>

Brown, Adam. Fractal Landscapes. <http://www.fractal-landscapes.co.uk/maths.html>

“Cooley-Tukey FFT Algorithm.” Wikipedia. 2 November 2006.

<http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm>

“Fast Fourier Transform.” Wikipedia. 22 November 2006.

<http://en.wikipedia.org/wiki/Fast_Fourier_transform>

“How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional

Dimension.” Wikipedia. 13 November 2006.

<http://en.wikipedia.org/wiki/How_Long_Is_the_Coast_of_Britain%3F_Statistical_

Self-Similarity_and_Fractional_Dimension>

Hughes, Merlin. “3D Graphic Java: Render fractal landscapes.” JavaWorld.com.

8 January 1998. <http://www.javaworld.com/javaworld/jw-08-1998/jw-08-

step.html>

Java Source Code. JavaWorld.com. <http://www.javaworld.com/jw-08-1998/step/jw-

08-step.tar.gz>

Turner, Martin J. “Modeling nature with fractals,” Plus Magazine. September 1998.

<http://pass.maths.org/issue6/turner2/index.html>

“VDS Fractal Landscape Generator.” <http://wwwcs.uni-

paderborn.de/SFB376/projects/a2/zBufferMerging/>

