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Abstract: 
A major topic covered this term in PMATH 370 was the Hénon map. This report is an attempt to give an overview of this mathematical construct, everything from its creation to how it is being currently used in modern research. A brief background on Michel Hénon and his areas of research will be presented. Then, the analysis will focus on the mathematics behind the map, specifically the points discussed in the textbook by Denny Gulick, which was used in the course. Finally, future applications and other discoveries that may come out of applying the Hénon map will be explored, as well as a short discussion on non-linear dynamics.
Please feel free to make my project available to future terms on the course website. A list of references is attached at the end. 
Background:

For hundreds of years, people have stared up into the night sky in wonder and amazement as they observed the countless stars, comets, and other heavenly bodies. Within the minds of some of those first few individuals, the science of astronomy was born. Over the centuries, human beings have developed lenses, telescopes, satellites, and most importantly computers; all of which are devices that have allowed them to probe the mysteries of the cosmos and see further out into the vastness of space. A lot of these inventions were made possible by the advent of a more sound understanding of the nature of mathematics. From the beginning, astronomers have always relied on a good knowledge of math in order to perform various calculations and estimate the distance between different objects in space. Also, as the power of technology increased, new questions often arose from ones that were answered, and this eventually led to new branches of astronomy opening up and a steady increase in the number scientists interested in this research. 
One such relatively new researcher is the French astronomer and mathematician, Michel Hénon. Born in Paris in 1931, he at first showed no real interest in science or math while he was young. As he became older, however, he developed a liking for astronomy, and eventually became active in studying the motion of groups of stars around the centre of their galaxies. Because of this, he started to explore the field of qualitative dynamics, which is the mathematical theory of dynamical systems. During the 1960’s, he began research in both of these areas in earnest, using computers to examine even small perturbations in the movements of stars and thus analyzing the stability of their paths. He also studied stellar orbits in order to try and explain when and why they will degrade over time. One of the goals of this type of investigation was to attempt to shed some light on various questions that had been capturing astronomers’ interest for long time, namely, “Is the solar system stable?” and “What important geometric structures govern the behaviour of bodies in space?” When the second question is applied to a relatively isolated group of three stellar bodies, it is one of the fundamental issues of the three-body problem, which involves figuring out how the gravitational and other forces of each of three bodies orbiting about each other would interact. 
The study of this and similar problems motivated Hénon to continue his work. Before Hénon’s time, a map known as the Lorenz model was used to model how dynamical systems would work in three dimensions. The Poincare section of that model refers to a plane that is transversal to a trajectory in the Lorenz model; or in other words, a plane that intersects a three-dimensional orbit in two points. It was this plane that Hénon chose to look at in order to make his work somewhat easier. As he plotted the points of intersection between the orbit and the plane, he at first could not discern any pattern among them. Continuing on in spite of that, he soon found himself looking at the odd, crescent-shaped curve that is shown below. 
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Figure 1.1

Hénon and his colleague continued to plot these intersection points for various iterations of this system with different variables, and he found that the curve he first saw did not always show up. Perplexed, Hénon tried numerous methods in an attempt to forecast a pattern for the appearance of the curve, but did not have any luck until he decided to use difference equations in order to force his data to fit the shape of a crescent moon. Hence, in 1976, he was able to make his most well-known scientific discovery that was later named after him: the Hénon map. Currently, Hénon is still pursuing further research in the Nice Observatory in southern France.   
Basic Mathematical Properties:
The Hénon map has yielded a great deal of interesting characteristics as it was studied. At their core, Hénon maps are basically a family of functions defined from 
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where a and b are real numbers. As a whole, this group of maps is sometimes represented by the letter H, and are referred to collectively as just the Hénon map. Usually, a and b are taken to be not equal to 0, so that the map is always two-dimensional. If a is equal to 0, then the reduces to a one-dimensional logistic equation. By plotting points or through close inspection, it can be seen that H is just a more generalized form of another family of functions of the form
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, where g is a constant. Therefore, one can visualize the graph of the Hénon map as being similar to a sideways parabola opening to the left, with its vertex somewhere on the x-axis, in general close to (1,0). 
Although it appears to be just a single function, the Hénon map is actually composed of three different functions, usually denoted H1, H2, and H3. These functions are defined below: 

[image: image5.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

y

ax

x

y

x

H

2

1

1

, 
[image: image6.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

y

bx

y

x

H

2

, 
[image: image7.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

x

y

y

x

H

3


From the above definitions, we have that 
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.To imagine visually how a parabola of the form 
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could be formed from applying the three above functions, first assume that a > 1, and we begin with an ellipse centred at (0,0) on the real plane. The transformations defined by H1 and then H2 compress the ellipse along the x-axis and stretch it along the y-axis, and elongate the edges of the half below the x-axis so it looks like an upright arch. Lastly, H3 then takes the ensuing figure and reflects it along the line
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. This resultant shape looks like a parabola opening to the left with an enlarged section near the vertex, which is very similar to family of curves we defined earlier. 
Another interesting property of the Hénon map is that it is invertible. It is not obvious just from inspection, but it is possible to derive an exact expression for
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Simply computing 
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and verifying that it is equal to 
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would show that this is the inverse of the Hénon map.
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 is also one-to-one. An elementary proof from Gulick’s text is redone below:
Claim: 
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Proof: Let x, y, z, and w be real numbers. Now, in order for 
[image: image17.wmf]ab

H

to be one-to-one, we must have 
[image: image18.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

w

z

H

y

x

H

ab

ab
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. In other words, 
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 must map each ordered pair of x and y must map to a unique pair of x and y. That means that we want 
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. Now, since b is not allowed to be 0, it follows that x = z. Then, y must equal w as well, and so we have
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Fixed Points:

This system’s fixed points depend on the values of a and b. In general, the process to find fixed points of a function f involves solving the equation
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. For the Hénon map, that means we must solve:
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After doing some basic substitution and algebra, we find an expression for x, which is
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. From that, we can deduce that unless a = 0, any fixed points would be real if
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. Using Theorem 3.23 from Encounters with Chaos, we can derive the following table relating to the existence of fixed points in the Hénon map:
	Value of a
	Fixed/Periodic points of 
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	Two fixed points, one attracting, one saddle
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	Two attracting period-2 points


Table 1.1
Clearly, 
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 has a period-doubling bifurcation when a =
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The derivative matrix for this map is
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, and also it can be seen that the map has a constant Jacobian. Solving for the eigenvalues of this matrix gives us
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, and any values of x and y can give us at most two eigenvalues.  Now, we know that if 
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are our two eigenvalues, then their values will determine whether a fixed point is attractive, repelling, or a saddle point. For example, if we let a = b = 1, then, as expected, we get two fixed points for
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to compute the eigenvalues of both of these fixed points, we discover that since we have 
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for both points, (without loss of generality), then they both are saddle points of that particular mapping. 
The Hénon Attractor:

This special property of the Hénon map is denoted AH,  and is defined as the set of all points for which the iterates of every point in a certain quadrilateral Q surrounding AH  approach a point in the set.  So far, the main focus has been on the general version of the map, where the values of a and b are arbitrary. A number of very interesting observations can be made if we choose to vary one of the parameters while keeping the other constant. First let us examine the behaviour of the attractor if a is fixed at 1.4 and b is allowed to vary between 0.1 to 0.5. Through the use of software, it can easily be seen that as b goes from 0.1 towards 0.3, the size of
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 goes from zero to a decently large number of points. Along the way, the attractor might occasionally become a small attractive periodic cycle, but that lasts only for that specific value of b and after that 
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 would just keep on growing. Once b moves past about 0.315, all the attractive points seem to disappear. For values much larger than 0.3, iterates of some points are the origin go to infinity. 

Now, more fascinating behaviour can be seen if b = 0.3 and a is allowed to vary from -0.2 to 2.4. A graph of this kind of experiment can be seen below. 
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Figure 1.2

At first, no fixed or periodic points are present in the attractor. As a is allowed to increase to past -0.1225, the first fixed point appears. Then, when a reaches 0.3675, a bifurcation occurs and we have a period-2 cycle. At around 0.9125, we have another bifurcation and the result is a period-4 cycle attractor. The appearance of a period-8 cycle happens at a = 1.0260. Basically, as the value of a keeps increasing, the number of points in the attractor keeps doubling and doubling more frequently, and this continues until a hits about 1.0580. This value is known as the “Feigenbaum constant” for this mapping. Normally, the first Feigenbaum constant is the limiting ratio between successive bifurcation intervals for a given map; however, in this case, the term is used to denote the point after which the size of the attractor stops doubling and basically becomes infinite. But, there are various values of a above this constant which yield a finite attractor that has a definite, non-random shape. A prime example of this is when a = 1.4, which produces the figure shown below. 
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Figure 1.3
Once you get to fairly large values of a, after about a = 1.45-1.55, the attractor disappears again and iterations of any point go to infinity. 

From the above data, it would seem that the Hénon map only produces an interesting attractor when a = 1.4 and b = 0.3. Indeed, those are the values that Hénon chose for his map in order to generate the attractor. Although such parameters do generate a fairly remarkable shape, other values close to the Hénon values also produce interesting patterns. Experiments have shown that the exact precision of the values of a and b do matter; 
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 has sensitive dependence on initial conditions and thus is labelled as a chaotic attractor. Also, looking at the picture presented in Fig. 1.3, the attractor appears to made up of a few simple, solid curves. Closer examination around any of the fixed points, however, reveals that what appears to be a smooth curve is actually many strands. Zooming in even further, those strands are revealed to be made up of even more strands. The closer a person looks, the more strands will be found. This is due to the fractal nature of the attractor, which gives parts of it a Cantor-set like appearance.  
Concluding Thoughts and Speculation:
Hénon’s map greatly simplified the three-body problem when he used it to model a discrete-time dynamical system, namely the intersection of the Poincare section with an orbit, which was a great step forward in his understanding of the data he found. It was a simple iterated map that has a chaotic attractor, and it allowed him to see the immediate link between fractals and deterministic chaos. It turned out that the Hénon map itself could generate fractals, being able to generate an attractor that has parts that appear to endlessly self-repeat. The values Hénon chose were specific to his problem, but perhaps other values of the parameters would yield results that have applications in other areas. With the development of computers, Non-linear Dynamical Astronomy really began to take off. Building upon the work of Lorenz, Poincaré, and Mandelbrot, Hénon helped to continue their work in this highly theoretical area. Now, as more information about the nature of stars and galaxies is discovered, mankind continues to move forward in answering the various questions we have about our universe. 
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Many calculations, examples, and proofs borrowed and reworked from Encounters with Chaos, Section 3.4.
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