
Lecture 19

Chaotic dynamics (cont’d)

Spatial distribution of chaotic orbits, “visitation frequencies”, invariant measures

Suppose that we are told that a function f : I → I demonstrates chaotic behaviour on I, that is, for

“almost all” seed points x0 ∈ I, the orbit of x0, given by the iteration procedure,

xn+1 = f(xn) , n ≥ 0 , (1)

exhibits seemingly random behaviour when the xn are plotted vs. n. Moreover, the orbit of x0 is

dense on I: Given any point a ∈ I, and any neighbourhood Nδ of a, i.e., the interval (a − δ, a + δ),

there is an element xn to be found in Nδ.

If this were all the information that could be obtained from the iterates {xn} defined in (1), then

there wouldn’t seem to be a way to tell whether a chaotic sequence was generated from a function

f : I → I or another function, say, g : I → I. In other words, we wouldn’t be able to tell the difference

between a chaotic orbit generated by the iteration of the Tent Map and a chaotic orbit generated by

iteration of the logistic map f4(x).

In this section, we show very briefly that there are differences between the two sets of chaotic

orbits, even though they are both dense on I. To see these differences, we look at how the

iterates {xn} are distributed over the interval I.

For example: Do the iterates {xn} tend to be spread out rather evenly over the interval I? Or are

they somewhat “concentrated” at some parts of I and less concentrated at other parts. This question

has been at the heart of an enormous amount of research in dynamical systems theory over the past

half-century and more. Here we provide a small glimpse into the subject.

There is a relatively simple (apart from some possible problems due to finite precision) numerical

procedure to visualize how the iterates xn defined in (1) are distributed over the interval I. In what

follows, we let I = [a, b]. (Typically, I = [0, 1], but we’ll keep the discussion general.)

Step No. 1: For an N relatively large (say 1000-10000), form a partition of the interval [a, b] in the

manner done in first-year Calculus, i.e., let

∆t =
b− a

N
, (2)
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and define

tk = a+ k∆t , 0 ≤ k ≤ N , (3)

so that t0 = a and tN = b.

Step No. 2: This partition will define a set of N subintervals of I,

Ik = [tk−1, tk] , 1 ≤ k ≤ N . (4)

For reasons that will become clear below, define the following set of half-open intervals,

Jk = [tk−1, tk) , 1 ≤ k ≤ N − 1 , (5)

along with the final interval,

JN = [tN−1, tN ] . (6)

In the special case that I[0, 1], for which a = 0 and b = 1,

∆t =
1

N
, (7)

and

tk = k∆t =
k

N
, (8)

with p0 = 0 and p1 = 1.

Step No. 3: Initialize a “counting vector,” – call it c, with N elements, so that

ck = 0 , 1 ≤ k ≤ N . (9)

The entries of c will be integers.

Step No. 4: Now choose a “good” seed point x0 ∈ I, i.e., a point that is not preperiodic (or at

least hopefully not preperiodic). Start computing the elements {xn} of the forward orbit of x0

using (1), i.e.,

xn+1 = f(xn) , n ≥ 0 . (10)

This will involve some kind of “loop” in your computer program. After you have computed each

iterate xn, determine the particular interval Jk, in which xn lies. This can done in the following

way (or some slight modification of it):

k = int

[

1

∆t
(xn − a)

]

+ 1 , (11)
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where, for a y ∈ R,

int[y] = integer part of y . (12)

Rationale: If xn lies in Jk, then

tk−1 ≤ xn < tk =⇒ a+ (k − 1)∆t ≤ xn < a+ k∆t

=⇒ (k − 1)∆t ≤ xn − a < k∆t

=⇒ (k − 1) ≤ 1

∆t
(xn − a) < k

(13)

This implies that

k − 1 = int

[

1

∆t
(xn − a)

]

, (14)

which yields (12).

After determining “k”, the index of the interval Ik in which xn lies, increase the appropriate

entry of c by one, i.e.,

ck = ck + 1 . (15)

Step No. 5: Perform the iteration procedure in (10) for a sufficiently large number M of times,

say M = 50, 000, or, better yet, M = 100, 000, or even M = 106. The larger the better: These

computations do not take a lot of time.

At the end of the computation, you will have produced an N -vector, c. Hopefully, some, if not all, of

its entries ck will be nonzero.

Question: What is this vector c?

Answer: Each element ck of this vector for 1 ≤ k ≤ N , has recorded the number of

times that the interval Ik = [tk−1, tk) has been visited by an iterate xn over the orbit

1 ≤ n ≤ M .

If you now plot the values of the elements ck vs. k, you will get an idea of how the iterates xn are

distributed over the interval I. Intervals Ik with higher numbers of visitation will have higher counts ck.

In order to be able to compare the results of this counting experiment for different choices of M ,

the total number of iterates computed, it is convenient to normalize the count vector c by defining
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the following N -vector p, the elements of which will not be integers, but fractions:

pk =
ck
M

1 ≤ k ≤ N . (16)

Technically, we should write pk(M), since our values of pk will depend on M , but we leave the M out

for the moment. Note that 0 ≤ pk ≤ 1 for 1 ≤ k ≤ N , and

N
∑

k=1

pk = 1 . (17)

Each element pk, 1 ≤ k ≤ N , may be interpreted in at least two ways, which are not unrelated:

1. pk is the fraction of the iterates {xn}Mn=1 that have visited interval Jk. If we view the set of

iterates {xn}Mn=1 as a huge collection of numbers between 0 and 1, the pk indicate how they are

distributed in the N bins Jk, 1 ≤ k ≤ N . This is, of course, a discrete approximation to how

they are distributed over [0, 1].

2. pk is the visitation frequency of interval Jk – or at least an approximation of it – by the

iterates {xn}Mn=1. This has a probabilistic interpretation: For each n > 0, we may view pk as

the probability that iterate xn will be found in interval Jk.

The term “visitation frequency” sounds “statistical” and suggests that the results of our computations

are approximations to a true “visitation frequency” that is obtained by letting the number of iterations

M → ∞.

Before going on, let us examine the results of a few computations for two chaotic maps on [0, 1] that

we have studied to date: (i) the Tent Map and (ii) the logistic map f4(x), the graphs of which are

once again plotted below:

1
x

y

1

0

Tent Map T (x).

1
x

y

1

0

Logistic map f4(x) = 4x(1− x).
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In the plots on the next page are shown plots of the elements, pk, 1 ≤ k ≤ M , of the vector p obtained

when the interval [0, 1] is divided into N = 1000 subintervals and M = 2× 106 iterates are used. The

most noticeable difference between the two plots is that one (the tent map) is quite “flat” compared

to the other (logistic-4).

Approximations to visitation frequencies for two chaotic maps on [0,1]
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In both cases, M = 1000 bins and N = 2× 106 iterates were used.

With regard to the tent map case, note that the value of each pk is roughly 0.001, i.e.,

pk ≈ 0.001 =
1

N
. (18)
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This is consistent with Eq. (17) and indicates that the iterates are visiting the entire interval [0,1] in

a quite uniform manner.

We might not be so surprised to see that the distribution associated with the tent tap is “flat”.

After all, the tent map is piecewise linear, i.e., the “pieces” are straight lines, as oppposed to the

logistic function f4(x), which is “curved.” This indeed has something to do with the flatness of the

tent map case, and we’ll “prove” that the distribution is flat, i.e., uniform.

The question then remains, “Why does the distribution for the logistic-4 map curl upwards near

the ends of the interval, implying that these outer regions are visited more frequently than the inner

region around x = 1
2?” An explanation is now to be provided.

In order to understand the shapes of these visitation frequency plots, we shall have to make use

of a kind of “conservation law”, that acknowledges the 2-to-1 nature of the tent and logistic-4 maps.

(The idea extends in a straightforward manner to other “many-to-one” maps, e.g., 3-to-1 maps.)

Consider an interval [a, b] ⊂ [0, 1]. Instead of being concerned where points from [a, b] are going

under the action of a map f (tent or logistic-4), we are going to be concerned about what points from

[0,1] are coming to [a, b] under the action of f . It is therefore convenient to place the interval [0, 1]

on the y-axis for each of the two plots of the graphs of T (x) and f4(x), as shown below.
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Tent Map T (x).
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Logistic map f4(x) = 4x(1− x).

In each figure are shown the two “preimages” of the interval [a, b] under the action of the map

concerned:

• Tent map: T ([a1, b1]) = [a, b] and T ([b2, a2]) = [a, b].
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• Logistic-4 map: f4([a1, b1]) = [a, b] and f4([b2, a2]) = [a, b].

Note that for both maps, the interval [b2, a2] is “flipped,” due to the decreasing nature of the map for

1
2 < x ≤ 1.

We now develop our “conservation law,” which is essentially a law of probabilities. We’ll be work-

ing in the discrete framework introduced earlier, that is, dividing the interval [0, 1] into N subintervals

Jk. Associated with each interval Jk is a probability pk that the iterate will visit it during an orbit of

length M . We’ll also assume that N is sufficiently (enormously?) large so that the discrete approxi-

mations that we are employing are sufficiently accurate. We’ll also assume that the length M of the

orbit is large/enormous, essentially approaching the limit M → ∞. Later, we shall actually let N , the

number of subintervals, go to infinity in order to arrive at a continuous description of the visitation

frequency which will then employ the differential dx instead of the bin width ∆x = ∆t.

In what follows, we shall, for the most part, adopt the first of the two interpretations of the quantities

pk, 1 ≤ k ≤ N , defined in Eq. (16), that is, that each pk is the fraction of iterates {xn}Mn=1 found

in interval Jk. We use this interpretation to adopt the next set of assumptions:

1. Let K ⊆ [0, 1] be an interval, and suppose that K is the union of a number of subintervals Jk,

i.e.,

K =

k2
⋃

k=k1

Jk . (19)

This is equivalent to the statement,

K = [tn1−1, tn2 ] , (20)

where the tk are the partition points defined earlier. Then the fraction of iterates {xn}Mn=1

that have visited interval K, to be denoted as F (K) is given by

F (K) =

n2
∑

k=n1

pk . (21)

Special case: When K = [0, 1], then n1 = 1 and n2 = N so that the sum in (21) is 1, as it

should be: The fraction of all iterates that lie in [0,1] is 1, since all iterates xn ∈ [0, 1].

Note: Eq. (21) is often written in the more convenient form,

F (K) =
∑

k

′pk , (22)
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where the prime on the summation indicates that the summation is over only those k ∈
{1, 2, · · ·N} for which Jk ⊆ K. Or, to remove any confusion, we could write,

F (K) =
∑

{k|Jk⊆K}

pk . (23)

2. This one is very important! With reference to the graphs of the Tent Map and the Logistic-4

Map on the previous page, the fraction of iterates that lie in the interval [a, b] is equal to the

sum of the fractions of iterates lying in [a1, b1] and [b2, a2]. Mathematically,

F ([a, b]) = F ([a1, b1]) + F ([b2, a2]) . (24)

This is a kind of conservation of iterates (which is essentially a conservation of mass).

The iterates in [a, b] come from the two intervals [a1, b1] and [b2, a2]. If we have arrived at a kind

of stationary distribution that tells us how the iterates are distributed over the intervals, then

the above conservation law has to hold. Later, we shall state this law mathematically.

Note: We have relied on the assumption that ∆t, the length of the subintervals Jk, is sufficiently

small so that the intervals involved above, i.e., [a, b], [a1, b1] and [b2, a1], can be expressed – or

at least well approximated – as unions of the subintervals Jk, i.e., no subintervals Jk have been

“split”. In the limit N → ∞, these approximations will become exact and Eq. (24) is valid

without the use of the subintervals Jk.

We are now in a position to argue – not prove, but at least understand – why the distribution

for the Tent Map is “uniform,” i.e., all of the probabilites pk are constant and equal
1

N
. It is, indeed,

because of the fact that the two components of T (x) are straight as well as having slopes of equal

magnitude, namely, 2. By simple geometry, the lengths of the intervals [a1, b1] and [b2, a2] are equal

and one-half the length of the interval [a, b] as shown once again below.

It should be fairly easy to see that if the conservation equation in (24) holds for any interval

[a, b] ⊆ [0, 1], then the pk should all be equal, i.e.,

pk =
1

N
, 1 ≤ k ≤ N . (25)

This is often referred to as a uniform distribution.

And what about the distribution associated with the Logistic-4 map? Why does it increase as

we approach 0 and 1? Very loosely speaking, because the magnitude of the tangents to the graph of

f4(x), i.e., |f ′(x)|, increases as x → 0+ and x → 1− and decreases as x → 1
2
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Tent Map T (x).

Looking at the graph of f4(x) with the interval [a, b] on the y-axis and its preimages, [a1, b1] and

[b2, a1], note that the lengths of these intervals are shorter than one-half the length of [a, b]. This

is due to the fact that the magnitudes of the tangents to the graph of f4(x), i.e., |f ′(x)| increase as

x → 0+ and x → 1−1, approaching the value of 4 in the limits. As [a, b] is moved downward toward

the origin, the lengths of these two preimages gets even smaller. Loosely speaking (or writing), in

order for the conservation equation in (24) to hold, the fractions of the iterates on these two intervals

has to be greater than the uniform distribution in (25).

Admittedly, these are very “loose” or “heuristic” descriptions of why we expect the shape of

the distributions of the pk fractions to be what they are. Let us now go to a more mathematical

description.

In order to do so, let us first consider the limit M → ∞, where M is the number of iterates. As

M increases, the number of iterates falling in the interval Jk, which we have called ck, will generally

increase with M . In fact, we should denote this number of iterates as ck(M). And we should once

again acknowledge that the fractions pk are also functions of M and write

pk(M) =
ck(M)

M
. (26)

We now claim that the following limits exist,

lim
M→∞

pk(M) = lim
M→∞

ck(M)

M
= pk , 1 ≤ k ≤ N . (27)
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Logistic Map f4(x).

Then pk is the limiting fraction of iterates that are found in subinterval Jk as we let the number

M of iterates go to infinity. Once again,
N
∑

k=1

pk = 1 . (28)

We now consider the pk to define a piecewise constant function P (x) on [0, 1]:

PN (x) = pk if x ∈ Jk , 1 ≤ k ≤ N . (29)

The subscript N reminds us that N subintervals Jk are used in the construction of this function.

Now we do something that will seem quite strange: We define a new function ρN (x) as follows,

ρN (x) =
1

∆t
PN (x) =

pk
∆t

if x ∈ Jk , 1 ≤ k ≤ N . (30)

This must seem very strange, indeed, since ∆t is very small, and since we eventually wish to take

the limit N → ∞, which implies that ∆t → 0. But as N , the number of intervals, increases, and ∆t

decreases, each pk decreases – there are more intervals in which to find the iterates! The reason we

define ρN (x) in Eq. (30) is that the fraction F (Jk) of iterates found in subinterval Jk is now given by

F (Jk) = pk = ρN (x∗k)∆x , x∗k ∈ Jk , (31)

where ∆x = ∆t (just to keep everything in terms of x). Note that x∗k can be any point in Jk, since

F (x) is constant over each subinterval Jk.
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The fraction of iterates found in an interval K = [a, b] ⊂ I now becomes

F (K) =
∑

k

′ρN (x∗k)∆x , x∗k ∈ Jk , (32)

where, once again, the summation is performed only over those indices k ∈ {1, 2, · · · , N} such that

Jk ⊆ K.

Note: Is this starting to look like something from first-year Calculus, i.e., Riemann integation?

Another note: We may view ρN (x) in Eq. (30) as a density function, i.e., the (nor-

malized) number of iterates per unit length. We write “normalized” since the total

number of “normalized” iterates over the entire interval [a, b] is 1, i.e.,

N
∑

k=1

pk = 1 . (33)

In this way, one could think of the iterates as representing electric charges, in which case

ρN (x), x ∈ Jk, is the lineal charge density (charge per unit length) over the interval Jk.

We now perform the limiting operation N → ∞. In this limit, ∆x, the length of the subintervals

Jk, will go to zero. The summation over these subintervals of length ∆x will become an integration

over the differential dx. We claim that in the limit N → ∞, the piecewise constant functions ρN (x)

converge to a function ρ(x), for x ∈ [0, 1]. For any subinterval [a, b] ⊆ [0, 1], the limiting fraction of

iterates in [a, b] is no longer a summation over all subintervals Jk lying in [a, b] as done in Eq.

(21) but rather an integration over the interval [a, b], i.e.,

F ([a, b]) =

∫ b

a

ρ(x) dx . (34)

We have arrived at a continuous description of the fractional distribution of iterates over the interval

[0, 1]. Note that the function ρ(x) is a normalized distribution since

F ([0, 1]) =

∫ 1

0
ρ(x) dx = 1 . (35)

Eq. (34) leads to the following continuous version of the conservation equation in (24): For any

[a, b] ⊆ K,
∫ b

a

ρ(x) dx =

∫ b1

a1

ρ(x) dx+

∫ a2

b2

ρ(x) dx . (36)
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We are now going to state this conservation result more generally as well as mathematically. In what

follows, we let I denote an interval on which a function f : I → I is defined. f may or may not be

chaotic. For any subset S ⊂ I, we define the following set,

f−1(S) = {x ∈ I , f(x) ∈ S} . (37)

In other words, f−1(S) is the set of all points in I that are mapped by f to the set S. In the case of

each of the Tent and Logistic-4 maps, S is the interval [a, b] ⊂ [0, 1] and

f−1([a, b]) = [a1, b1] ∪ [b2, a2] , (38)

where the ai and bi depend on the maps. The above relation is true because

f([a1, b1]) = f([b2, a2]) = [a, b] . (39)

Definition: Let I be an interval and f : I → I. If there exists a function ρ : I → R such that for all

S ⊆ I,
∫

S

ρ(x) dx =

∫

f−1(S)
ρ(x) dx , (40)

then ρ is said to be the invariant (probability or normalized) density function which defines

the invariant measure associated with the mapping f : I → I.

Notes:

• The notation

∫

f−1(S)
implies an integration over the entire set f−1(S) defined earlier. Eq. (36)

stated earlier,
∫ b

a

ρ(x) dx =

∫ b1

a1

ρ(x) dx+

∫ a2

b2

ρ(x) dx , (41)

is a special case of Eq. (40).

• The reason for the term invariant measure is that the density function ρ is considered to define

a “measure” of subsets S ⊂ I – a generalized notion of “length”, a kind of “weighted length”.

Regions of I that have higher ρ-values, i.e., fractions of iterates, are weighted more heavily that

those regions with lower ρ-values. Usually, the invariant measure associated with a dynamical

system f : I → I is denoted as “µ”. The invariant measure, or “µ-measure” of an interval [a, b]

is given by

µ([a, b]) =

∫ b

a

φ(x) dx , (42)
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which, as we saw earlier, is the fraction of iterates in the interval [a, b]. The conservation relation

in (40) may be expressed as follows,

µ(S) = µ(f−1(S)) for all S ∈ I . (43)

• Our discussion of the density function ρ(x) may also bring back memories of earlier courses in

Calculus where the ideas of one-dimensional mass and charge densities were discussed, i.e.,

infinitesimal amount of mass or charge per unit length. For example, given a thin rod that lies

along x-axis on the interval [a, b], if ρ(x) represents the mass density of a rod at point x, then

the total mass of the rod is

M =

∫ b

a

ρ(x) dx . (44)

The invariant density functions for the Tent and Logistic-4 maps

Tent Map T (x)

Here we simply state that, as expected, the invariant density function ρ(x) for the Tent Map on [0, 1]

is a constant function – no regions have a higher fraction of iterates than others. In the case that

I = [0, 1],

ρ(x) = 1 , x ∈ [0, 1] , (45)

Referring to the earlier figure which shows that graph of the Tent Map function T (x) along with the

interval [a, b] and its two preimages, the conservation equation in (36) becomes
∫ b

a

dx =

∫ b1

a1

dx+

∫ a2

b2

dx . (46)

Let us finally state explicitly what the ai and bi are:

a1 =
1

2
a , b1 =

1

2
b , (47)

and

b2 = 1− 1

2
b , a2 = 1− 1

2
a . (48)

The integrals in (46) are, of course, simple to evaluate:

LHS = b− a .

RHS = (b1 − a1) + (a2 − b2)

=
1

2
(b− a) +

1

2
(b− a)

= b− a . (49)
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Tent Map T (x).

which is satisfied for all [a, b] ∈ [0, 1].

The invariant measure µ defined by the density function ρ(x) = 1 is

µ([a, b]) =

∫ b

a

ρ(x) dx

=

∫ b

a

dx

= b− a . (50)

In this case, the µ-measure of the interval [a, b] is the length of the interval, the usual notion of the

“size” of an interval. This is somewhat of a coincidence since the interval I on which the Tent Map

T (x) is defined is [0, 1]. If we were to consider a tent map on I = [0, 2], then the constant density

function ρ would be

ρ(x) =
1

2
, (51)

so that
∫

I

ρ(x) dx =

∫ 2

0

1

2
dx = 1 . (52)

When the density function ρ(x) is constant, the measure defined by ρ is often called uniform mea-

sure.
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Logistic-4 map f4(x) = 4x(1 − x)

Referring to the earlier figure which shows the graph of the logistic-4 function f4(x) along with the

interval [a, b] and its two preimages, let us rewrite the conservation equation in (36) that would have

to be solved by the invariant density function ρ(x) associated with the f4(x) map.

∫ b

a

ρ(x) dx =

∫ b1

a1

ρ(x) dx+

∫ a2

b2

ρ(x) dx . (53)

a2b2

a

b

b1a1 1
x

y

1

0

Logistic Map f4(x).

The ai and bi are easily found to be as follows:

a1 =
1

2
− 1

2

√
1− a , b1 =

1

2
− 1

2

√
1− b , (54)

and

b2 =
1

2
+

1

2

√
1− b , a2 =

1

2
+

1

2

√
1− a , (55)

We now state a remarkable result – the density function ρ(x) satisfying (53) with the ai and bi defined

above, is known analytically:

ρ(x) =
1

π

1
√

x(1− x)
. (56)

The graph of ρ(x), presented in the figure below, demonstrates a strong similarity to the distribution

of iterates of the logistic-4 map obtained numerically and presented earlier.
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, x ∈ [0, 1], for logistic-4 function fa(x) = 4x(1 − x).

Even though ρ(x) → ∞ as x → 0+ and x → 1−, it is integrable:

∫ 1

0
ρ(x) dx =

1

π

∫ 1

0

1
√

x(1− x)
dx = 1 . (57)

The fact that the function ρ(x) satisfies the conservation equation in (53) can be verified after a

generous amount of Calculus, starting with the result (left as an exercise) that for 0 ≤ a ≤ b ≤ 1,

∫ b

a

ρ(x) dx =
1

π

∫ b

a

1
√

x(1− x)
dx

=
1

π

[

Sin−1(2b− 1)− Sin−1(2a− 1)
]

. (58)

In the special case a = 0 and b = 1, the above result yields,

∫ 1

0
ρ(x) dx =

1

π

[

Sin−1(1) − Sin−1(−1)
]

=
1

π

[(π

2

)

−
(

−π

2

)]

= 1 . (59)

This has been a very short introduction to the subject of dynamical systems and invariant measures

– very little could be done which, of course, means that much has been omitted. But it was intended

to be a starting point for anyone who is interested in pursuing the subject further.

One final note: The existence of the density function ρ(x) in Eq. (40) is not always guaranteed.

But an invariant measure µ generally exists. The complication is that the measure µ is a measure,
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and measures can be quite “irregular”. They can include things such as “Dirac delta functions,” i.e.,

“point masses”, which cannot be modelled with “normal functions”. This will certainly be the case

when we study measures on fractal sets – at least lightly.
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Lecture 20

Chaotic dynamics (cont’d)

The “Ergodic Theorem”

It is worthwhile to mention another very important idea arising from dynamical systems theory, the

so-called “Ergodic Theorem.” The Ergodic Theorem has been of special importance in mathematical

physics with respect to the idea that

“Time average” = “Space average”. (60)

Here we simply state the basic idea.

Let I = [a, b] and f : I → I such that associated with f is an invariant density function ρ(x)

which satisfies the condition in Eq. (40) from the previous lecture (Lecture 20, Week 7), which we

reproduce here: For all S ⊂ I,
∫

S

ρ(x) dx =

∫

f−1(S)
ρ(x) dx . (61)

Given a suitable seed point x0 ∈ I (i.e., an x0 that is not preperiodic), define

xn+1 = f(xn) , n ≥ 0 . (62)

In other words, compute the forward orbit O(x0) of x0.

Now suppose that g : I → R is a continuous function and that we evaluate g at the iterates xn, forming

the following average: For N > 1,

SN =
1

N

N
∑

n=1

g(xn) . (63)

Then (subject to some other technical considerations which we’ll ignore here), the limit of the above

average exists, i.e.,

lim
N→∞

SN = S . (64)

Furthermore, the limit S is related to the density function ρ as follows,

S =

∫ b

a

g(x)ρ(x) dx . (65)

Important points:
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1. The quantities SN in (63) are time averages – they are the average values of g(x) evaluated at

the iterates xn which range over I. We consider the orbit O(x0) = {xn}Nn=0 to define a trajectory

over discrete time units, n = 0, 1, 2, · · · , with g(x) being evaluated at the points in I visited by

the iterates.

2. The limit S in (64) is the limiting time average.

3. The integral in (65) is a spatial average. It is a weighted average of the function g(x) – the

weighting is performed by the invariant density function ρ(x). A region K ⊂ I that is visited

more frequently by the iterates will have higher values of ρ(x). This is also reflected in the time

average – if the region K ⊂ I has a higher ρ(x) values, more iterates will be visiting it, which

will influence the average SN in (64).

4. Eq. (65) is the mathematical equivalent of the statement in (60).

Example 1: Consider the tent map T (x) on [0, 1] with invariant density function ρ(x) = 1. In what

follows, we consider a few g(x) and compute their time averages in Eq. (63) for two values of N ,

namely N1 = 106, N2 = 108. These results are compared with the corresponding spatial averages in

(65). Here, since ρ(x) = 1,

S =

∫ 1

0
g(x) ρ(x) dx =

∫ 1

0
g(x) dx . (66)

1. g(x) = x. We find that

SN1 = 0.4998512593 SN2 = 0.4999952251 . (67)

The time averages are seen to be moving toward the limiting value

S =

∫ 1

0
x dx =

1

2
. (68)

2. g(x) = x2. We find that

SN1 = 0.3332341836 SN2 = 0.3333301506 . (69)

The time averages are seen to be moving toward the limiting value

S =

∫ 1

0
x2 dx =

1

3
. (70)
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3. g(x) = ex. We find that

SN1 = 1.7180724229 SN2 = 1.7182755248 . (71)

The time averages are seen to be moving toward the limiting value (to ten digits)

S =

∫ 1

0
ex dx = e− 1 = 1.7182818285 . (72)

Example 2: Now consider the logistic-4 map f4(x) = 4x(1 − x) with invariant density function,

ρ(x) =
1

π

1
√

x(1− x)
. (73)

Integrals involving the above density function are generally difficult to compute analytically, which

provides a good motivation to approximate them using time averages. Here we shall consider only

one example: A function that was quite important in an earlier lecture. For the moment, consider

a ∈ [0, 4] in general and define the function,

ga(x) = ln |f ′
a(x)| = ln |a− 2ax| . (74)

Recall (Lectures 13 and 14, Week 5) that the limiting time average of this function, i.e.,

S = lim
N→∞

N
∑

n=1

ln |f ′
a(x)| , (75)

is the Lyapunov exponent λ(x0) of fa(x). As was discussed earlier, the Lyapunov exponent is

computed as a time average of values of the function ln |f ′
a(x)| over the iterates xn. What we shall

see here, is that the Lyapunov exponent can also be computed as a spatial average over the invariant

density function ρ(x).

For ga(x) in (74) with a = 4, i.e.,

g4(x) = ln |4− 8x| , (76)

we obtain the following numerical results, once again for N1 = 106 and N2 = 108,

SN1 = 0.6931468887 SN2 = 0.6931471771 . (77)

Note that both of these results are positive, in accord with the fact that the map f4(x) is chaotic. As

such, we expect a positive Lyapunov exponent.
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As N → ∞, these time averages should converge to the spatial average of g4(x), namely,

S =
1

π

∫ 1

0

ln |4− 8x|
√

x(1− x)
dx . (78)

With a little Calculus, this integral can be computed analytically,

S =
1

π

∫ 1

0

ln |4− 8x|
√

x(1− x)
dx

= ln 2

≈ 0.6931471806 . (79)

We see that the estimate SN2 agrees with the theoretical value to 1 part in 10−8.

Note: It is interesting that the Lyapunov exponent for the logistic-4 map, λ = ln 2, is equal to that

of the Tent Map.

A final note: Recall that the Lyapunov exponent for the logistic function fa(x) was defined for all

a ∈ [0, 1] (the value λ = −∞ was also acceptable). For many other a values, especially 0 < a ≤ 3,

the map fa is not chaotic: Orbits are attracted to fixed points or N -cycles. Clearly, we computed

the Lyapunov exponents for these cases as time averages of the function ga(x) over the orbits. The

question remains, are these time averages equal to spatial averages over some kind of invariant density

functions or measures? The answer is “Yes.” The problem is that the density functions are no longer

functions – they are generalized functions, which include the idea of Dirac delta functions. For

example, recall that for 0 < a < 3, fa(x) has an attractive fixed point at x̄2 =
a− 1

a
. As such, all

iterates xn will approach x̄2 as n → ∞. In this case, the invariant measure is “δ(x − x̄2)”, the (unit)

Dirac delta function centered at x = x̄2. We may discuss this later in the course.

Another final note: The idea of performing an integration of a function f(x) over an interval or

region of Rn by sampling over points in the region is the basis of so-called Monte Carlo methods.

Here is a simple example. Suppose that you wish to obtain estimates of the following integral,

∫ b

a

f(x) dx , (80)

where the function f(x) is sufficiently “nice,” e.g., continuous or piecewise continuous. The first step

is to design an algorithm to generate random (well, pseudo-random) numbers xn distributed uniformly
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over the interval [a, b]. (Usually, one can find a routine that generates random numbers with a uniform

distribution over [0, 1]. You can then scale these numbers to the interval [a, b].

Now, for a large positive integer N , generate the random numbers xn ∈ [a, b], 1 ≤ n ≤ N . At each

step, compute f(xn). (You are essentially “sampling” the function at each xn ∈ [a, b]. Then compute

the average value of these sampled values,

AN =
1

N

N
∑

n=1

f(xn) . (81)

As N increases, the average values AN should provide better approximations to the integral in (80).

This might seem like an academic exercise, but the method is quite powerful in problems involving

high dimensions – even, for example, in the estimation of regions in Rn with complicated boundaries.

For a simple example, go to the following Wikipedia site,

https://en.wikipedia.org/wiki/Monte Carlo method

and scroll down to the video which illustrates the use of the Monte Carlo method to approximate the

value of π. In this case, the function f(x) = 1 and the region of integration D ∈ R2 is the circular

region of radius 1 in the first quadrant.

Here is the idea: You generate random ordered pairs (xn, yn) in the unit square, i.e., 0 ≤ xn ≤ 1

and 0 ≤ yn ≤ 1, distributed uniformly over the square region [0, 1]2 ∈ R2, for 1 ≤ n ≤ N . For each

n ≥ 1, evaluate f(xn, yn), where

f(x, y) =







1 , x2 + y2 ≤ 1 ,

0 , x2 + y2 > 1 .
(82)

Once again, compute the average value

AN =
1

N

N
∑

n=1

f(xn, yn) . (83)

As N increases, the AN provide better estimates to the integral
∫ ∫

D

f(x, y) dx =
π

4
, (84)

where

D = {(x, y) ∈ R2 | x2 + y2 ≤ 1 , 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 } (85)

The average value AN is essentially computing the fraction of iterates (xn, yn) which land in the region

D.
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A return to the dynamics of the Logistic Map: The case a > 4

We now examine the interesting iteration dynamics associated with the logistic map when a > 4. The

graph of fa(x) = ax(1− x) for a ∼= 4.5 is sketched below:

J1

y = x

1

1

x

y

The most important qualitative feature of this graph is that fa no longer maps [0, 1] into itself: There

is an open interval of points, J1, that are mapped outside the interval [0, 1]. For x ∈ J1, f(x) > 1.

Note what happens to points x ∈ J1 under further iteration of f , as shown in the figure. We note

from the graph that: 1) f2(x) < 0, 2) fn+1(x) for n ≥ 2 and finally 3) fn(x) → −∞ as n → ∞.

The natural question that follows is “Are there any other points in [0, 1] that eventually leave

[0, 1]?” The answer is “Yes”. Note that every point x ∈ [0, 1] has two preimages y1 6= y2 such that

f(y1) = f(y2) = x. This leads us to consider the set J2 of all preimages of the set J1, i.e.

J2 = {x ∈ [0, 1] | f(x) ∈ J1} (86)

Since x ∈ J2 implies that f(x) ∈ J1, this implies in turn that f2(x) /∈ [0, 1] and that fn(x) → −∞ as

n → ∞. Now, what is the set J2, the set of preimages of J1?

We may determine the set J2 graphically by “copying” the set J1 onto the y-axis and then applying

f “backwards”, i.e. using the line y = x to determine which points on the x-axis are mapped to J1.

This is shown below:

226



J21

J1

J22

J11

x

y

y = x

1

1

Thus, f(J21) = J1 and f(J22) = J1. The set J2 = J21 ∪ J22 is the set of all points x ∈ [0, 1] such that

f2(x) /∈ [0, 1], i.e. the set of points that leave [0, 1] after two applications of f .

The reader should see the pattern now. We define the set J3 of all preimages of J2, i.e.

J3 = {x ∈ [0, 1] | f(x) ∈ J2} . (87)

Note that x ∈ J3 implies that f2(x) ∈ J1 which in turn implies that f3 /∈ [0, 1]. Now continue this

process, if possible, to define the following sets of points,

Jn = {x ∈ [0, 1] | fn(x) /∈ [0, 1]} , n ≥ 1. (88)

It is now convenient to define the following sets:

C1 = [0, 1] − J1 (89)

C2 = C1 − J2 = [0, 1] − (J1 ∪ J2) (90)

...

Cn = Cn−1 − Jn = [0, 1] −
(

n
⋃

k=1

Jk

)

. (91)

From the definition of the Jk, we see that for n ≥ 1, Cn is the subset of points in [0, 1] that remain in

[0, 1] after n iterations of f . The natural question is, “Is there a set of points J that remain on [0, 1]

after any number of iterations of f?” In order to answer this, let us examine the sets C1, C2, etc..

From the figures shown earlier, and the definitions in (91), the sets C1 and C2 have the following
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structure:

[0, 1]

C1

C2

Note that C1 is obtained by means of a “dissection procedure” – a removal of the open set J1 from

[0, 1]. C2 is obtained from a “dissection” of C1 – a removal of an open set from each of the subintervals

making up C1. Note that [0, 1], C1 and C2 are closed intervals. The construction of intervals C1 and

C2 by means of a “dissection” procedure is reminiscent of the “middle-thirds dissection” procedure

that was used to construct the ternary Cantor set that we discussed earlier in this course.

For the moment we simply state, without proof, the following result:

The sequence of sets C1, C2, . . . converges, in the limit n → ∞, to a “Cantor-like set”

C ⊂ [0, 1], i.e. lim
n→∞

Cn = C. For any x ∈ C, fn(x) ∈ J for all n ≥ 0. (The term

“Cantor-like” will be defined shortly.)

In other words, the set of points C that remain in [0, 1] after any number of iterations

of fa is a “Cantor-like set”. Note that the structure of this set, i.e. the positions of points x ∈ C,

x /∈ {0, 1}, is dependent upon the logistic map parameter a. For example, the size/length of the

open interval J1 removed form [0, 1] to produce J1 is dependent upon a: As a → 4+, this interval

is smaller. Of course, at a = 4, no dissection takes place. The reader is encouraged to find end-

points of the intervals that make up the set J1, as functions of the parameter a, hence the length

of the removed interval. This size will also determine the sizes of the sets J21 and J22 removed in

the next dissection procedure, although not in a linear way since the map fa(x) is not a linear function.

The reader is invited to consider an alternate definition of the set C constructed above:

C = {x ∈ [0, 1] | x is a periodic point of fa with period n, n ≥ 1} .

Graphical analysis should show (as indeed our previous analysis of the bifurcations of fa did) that all

periodic orbits of fa are repulsive, as they were for the case a = 4.
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Cantor (or “Cantor-like”) sets

We now study Cantor-like sets in a little more detail, first by studying the famous “ternary Cantor

set.” We don’t really have to do this by looking at the iteration of functions, since Cantor-like sets

may be produced by a limiting procedure of dissection, i.e., removal of points from intervals/sets. But

it is instructive to consider iteration since, after all, it is a central idea of this course.

We shall consider a family of “linearized versions” of the logistic maps fa(x), namely, the following

family of modified Tent maps,

Ta(x) =







ax 0 ≤ x ≤ 1
2

a(1− x) 1
2 < x ≤ 1 .

(92)

(With apologies: In a previous assignment, “Ta(x)” was used to denote a “shifted” Tent Map.) The

maximum value of Ta(x) is Ta

(

1

2

)

=
a

2
. When a = 2, T2(x) is the Tent Map that we have studied in

past lectures.

In the case a = 3, the graph of the Tent Map extends out of the “box”, i.e., [0, 1]× [0, 1], as shown

below. We see that T3 maps some points in [0,1] out of [0,1]. The fate of these points, as in the case

of the logistic map fa for a > 4 is that under further iteration, they go to −∞.

J1

y = T3(x)

1

x

y = x

1

y

We’ll proceed as we did for the logistic map fa in the previous lecture by making a few observations:
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1. Points in the (open) interval

J1 =

(

1

3
,
2

3

)

(93)

are mapped out of [0, 1] by T3. In other words, these points leave [0, 1] after one application of

T3.

2. Points in [0, 1] that are mapped by T2 to the interval

(

1

3
,
2

3

)

are mapped out of [0, 1] after one

additional application of T3. These points lie in the preimage of the interval

(

1

3
,
2

3

)

which, as

in the case of the logistic map, can be determined graphically by backwards iteration to be the

set

J2 =

(

1

9
,
2

9

)

⋃

(

7

9
,
8

9

)

. (94)

In other words, points in J2 leave [0, 1] after two applications of T3.

This procedure can be continued, but it is perhaps easier to focus on the points in [0,1] which remain

in [0,1] after a given number of iterations. As we did in the previous lecture for the logistic maps, we

determine the sets of points in [0, 1] which remain in [0, 1] after n applications of the map T3:

1. The set of points in [0, 1] which remain in [0, 1] after one application of T3 comprise the set

C1 =

[

0,
1

3

]

⋃

[

2

3
, 1

]

= I11 ∪ I12 . (95)

2. The set of points in [0, 1] which remain in [0, 1] after two applications of T3 comprise the set

C2 =

[

0,
1

9

]

⋃

[

2

9
,
1

3

]

⋃

[

2

3
,
7

9

]

⋃

[

8

9
, 1

]

= I21 ∪ I22 ∪ I23 ∪ I24 . (96)

Graphically, these intervals look as follows,

C0 = [0, 1]

C1

C2

These intervals look almost identical to the intervals presented earlier for the logistic map, but there

is one important difference: All of the line segments that comprise a given set Cn have equal length

because the tent map T3(x) is piecewise linear.

230



The above results are easily extended to the general case: The set of points in [0, 1] which remain in

[0, 1] after n applications of T3 is the following set of 2n closed intervals of length 3−n:

Cn =

2n
⋃

k=1

Ink . (97)

In other words,

Cn = {x ∈ [0, 1] , T n
3 (x) ∈ [0, 1] } . (98)

From the diagram above, we see that

C2 ⊂ C1 ⊂ C0 . (99)

In general,

Cn+1 ⊂ Cn . (100)

In other words, if a point x remains in [0,1] after n+ 1 iterations, which implies that x = Cn+1, then

it must remain in [0,1] after only n iterations, i.e., x =∈ Cn. But the converse does not necessarily

apply: There will be points in Cn that leave after the next application of T3.

As such, we have a nested set of closed intervals,

C0 ⊃ C1 ⊃ C2 ⊃ · · · . (101)

We now define the set C to be the infinite intersection of this nested set, i.e.,

C =
∞
⋂

n=0

Cn . (102)

C is the set of points in [0, 1] that belong to all Cn, n ≥ 0, i.e.,

C = {x ∈ [0, 1] , x ∈ Cn for all n ≥ 0}. (103)

Eq. (102) is stating that

C = “ lim
n→∞

Cn”. (104)

Note: The existence of such a nonempty set is guaranteed by the Nested Intervals Theorem

which was used earlier in the course.

The set C described above is commonly known as the “ternary Cantor set” or simply “the Cantor

set.”

231



Clearly, the set C contains the points 0, 1, 1
3 and 2

3 . It contains some multiples of 1
9 but not all of

them, i.e., it contains the points k
9 for k ∈ {0, 1, 2, 3, 6, 7, 8, 9} but not for k ∈ {4, 5}. In fact, it should

not be difficult to see that for each n ≥ 1, the endpoints of each of the 2n closed intervals which

comprise the set Cn are contained in C. Since each of the closed intervals has 2 endpoints, there are

2 × 2n = 2n+1 such points which must be contained in C. Since this is true for all n > 1, it follows

that the number of points in C is arbitrarily large, i.e., without bound, i.e., infinite. Later, we’ll show

that the number of points in C is actually “beyond infinite.”

And later, we shall also discover that C also contains some points that you may not have guessed,

e.g., 1
4 and 3

4 .

Here is a figure showing seven stages of the dissection process in order to show how “thin” the

Cantor set C is.

Indeed, the Cantor set C has to be “thin.” Recall that it lies in the intersection of all of the sets

Cn which were produced by dissection. And recall that each set Cn is composed of 2n intervals, each

of length 3−n. Therefore, the “length” of the set Cn is

Ln = (2n)(3−n) =

(

2

3

)n

. (105)

This implies that the total “length” of the Cantor set C is

L = lim
n→∞

Ln = 0 . (106)

It has zero length! We’ll return to this idea a little later.

The Cantor set C, and all Cantor-like sets (we’ll define this shortly), is a fascinating set. Here,

we shall prove a few basic, but very interesting properties. We’ll show that C is

1. bounded,

2. closed,
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3. totally disconnected,

4. perfect and

5. uncountable.

Definition: A set of real numbers S that has properties 1-4 is said to be a Cantor-like set or, simply

a Cantor set. (The book by Gulick simply calls these sets “Cantor sets”, but many references use

the term “Cantor-like”, the terminology that will be employed, for the most part, in this course.)

We now prove the properties listed above.

1. The set C is bounded.

The formal definition of a bounded set is as follows:

Definition: A set S ⊂ R is bounded if there exists an M ≥ 0 such that

|x| ≤ M for all x ∈ S .

Proof that the set C is bounded: Rather trivial. Since C ⊂ [0, 1], it follows that if x ∈ C, then

0 ≤ x ≤ 1 which, in turn, implies that

|x| ≤ 1 . (107)

Therefore C is bounded.

To be continued ...
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Lecture 21

Cantor and Cantor-like sets (cont’d)

We continue with the proofs of several properties of the Cantor set.

2. The set C is closed.

Definition: A set S is closed if it contains all of its limit points: If {xn} ∈ S and lim
n→∞

xn = x then

x ∈ S.

Examples:

1. The set of real numbers R is closed. The limit x of any convergent sequence {xn} ∈ R is a real

number. (The fact that the set R is unbounded might bother some people, because of some

other ideas from analysis. But closed sets do not have to be bounded.)

2. The set of rational numbersQ ⊂ R is not closed. It is possible to have a convergent set of rational

numbers xn ∈ Q that converges to an irrational number x /∈ Q. For example, the sequence of

rational numbers,

x1 = 3 , x2 =
31

10
, x3 =

314

100
, x4 =

3141

1000
· · · ,

converges to the irrational number π /∈ Q.

3. The set [0, 1] is closed.

4. The set (0, 1] is not closed. All points of the sequence, xn =
1

n
, n ≥ 1, belong to (0, 1]. And this

sequence is convergent, since lim
n→∞

1

n
= 0. But the limit of this sequence does not lie in (0, 1].

(Note that (0, 1] is not closed, but that does not imply that it is open. That’s another definition.)

Before proving that C is closed, let us recall the “middle-thirds dissection” procedure involved in its

construction. We started with the set/interval C0 = [0, 1] and removed the middle-third open set

(13 ,
2
3) to produce the set C1. We then removed the middle-third open set of C1 to produce C2 and so
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on.

C0 = [0, 1]

C1

C2

At the nth stage, we have the set Cn which is a union of 2n intervals of length 3−n. The net result is

a nested set of closed sets,

C0 ⊃ C1 ⊃ C2 ⊃ · · · . (108)

The Cantor set C is defined to be the infinite intersection of this nested set, i.e.,

C =

∞
⋂

n=0

Cn . (109)

As a result, C is the set of points in [0,1] that belong to all sets Cn, n ≥ 0. We now proceed with the

proof.

Proof that C is closed: Let A ∈ C be a convergent sequence of points in C, i.e., A = {xn}∞n=1 ⊂ C

such that lim
n→∞

xn = x. We now prove that x ∈ C.

Recall that the Cantor set is contained in each set Cn for n ≥ 0. Since A is a subset of C, it

follows that A ⊂ Cn for all n ≥ 0, i.e., all points in A belong to each set Cn. But each Cn is a finite

union of closed intervals, which implies that each Cn is a closed set, i.e., it contains all of its limit points.

Note: Here we simply remark, without proof, that a finite union of closed sets must be closed. An

infinite union of closed sets does not have to be closed. The proofs of these statments would be the

subject of a course dedicated to Real Analysis.

For each n ≥ 0, A ⊂ Cn which implies that

lim
n→∞

xn = x ∈ Cn .

This implies that x ∈ Cn for all n ≥ 0. But from the definition of C, i.e., Eq. (103), this implies that

x ∈ C. Therefore C is closed (i.e., it contains its limit points.
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Here is another look at the dissection procedure which produces the Cantor set C. You might ask the

question, “ The set C is very thin and has many, many gaps. How can there even exist a sequence of

points xn ∈ C which converges to a point x ∈ C?”

Here is an example: The set of points

A =

{

1

3n

}∞

n=1

=

{

1,
1

3
,
1

9
,
1

27
· · ·
}

. (110)

All of the points xn =
1

3n
, n ≥ 1, belong to the set C. The limit of this sequence is x = 0, which is

also an element of C.

3. The set C is totally disconnected.

In order to talk about a set being “totally disconnected,” we should first discuss the idea of a set being

“disconnected.” A set S ⊂ R (and more generally, in Rn) is disconnected if it is “not connected,” i.e.,

“not in one piece.” For example, the set

S1 = [0, 1] ∪ [2, 3]

is not connected. In order to get from one “piece” of S, say [0, 1], to the other, [2, 3], you have to leave

the set S, i.e., enter the territory (1, 2) /∈ S. Even the set

S2 = [0, 1) ∪ (1, 2] ,

which is obtained from the set [0, 2] by removing the single point 1, is not connected. In order to get

from the piece [0, 1) to the other piece (1, 2], you have to leave the set S. This might seem a little

strange since you can find sets of points, one from [0,1) and the other from (1,2] which are arbitrarily

close to each other. But the point 1 is missing, and that’s that.

There is a mathematical way to define disconnectedness. It will have to involve the concept of

open sets, which we haven’t yet defined formally. The following definitions are formulated over the
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real line R and can be generalized to arbitrary metric spaces.

Definition: The open interval (or, in general, “open ball”) of radius r about a point p ∈ R is the

set

Br(p) = {x ∈ R | |x− p | < r} = (p − r, p+ r) .

It is an interval (or ball) of radius r centered at p.

Definition: A set S ⊂ R is open if for each p ∈ S, there exists an r > 0 so that Br(p) ⊂ S.

Examples:

1. The set S = (0, 1) is open. No matter how close a point p is to one of the endpoints of S, say

0, if we choose r = p/2, then the open ball Br(p) lies entirely in S. In fact, for any r < p, the

open ball Br(p) lies entirely in S.

2. The set S = [0, 1] is not open. If we choose p = 0, then there there exists no r > 0 for which the

open ball Br(0) lies entirely in S.

3. The set S = (0, 1] is not open. If we choose p = 1, then there is no open ball Br(1) which lies

entirely in S.

Note: In Example 2, S = [0, 1], which is not open, is closed. But in Example 3, S = (0, 1], which is

not open, is not closed. This is to illustrate the fact that, formally, “open” and “closed” are not oppo-

sites or negations of each other. If a set S is not one of the two, it is not necessarily the other of the two.

Definition: A set S ∈ R is disconnected if there exist two disjoint open sets A,B ⊂ R, i.e., A∩B = φ

(where φ denotes the null set) such that A ∩ S 6= φ, B ∩ S 6= φ and

S ∈ A ∪B .

In other words, the set S is contained in two disjoint open sets A and B, each of which contain at

least one point of S.
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For the set S1 defined earlier,

S1 = [0, 1] ∪ [2, 3] ,

we can use the disjoint open intervals,

A =

(

−1,
5

4

)

B =

(

3

2
, 4

)

.

For the set S2 defined earlier,

S2 = [0, 1) ∪ (1, 2] ,

we can use the open sets

A = (−1, 1) B = (1, 3) .

Note that there is not much flexibility for A and B when it comes to the point 1. We must be able

to include the first piece [0, 1) in A and the second piece (1, 2] in B, with A and B not intersecting.

This would not be possible if we demanded that the sets A and B were closed, since they would have

to intersect at 1.

Now what about “total disconnectedness” of a set S? Loosely, it means that one cannot get

from one point x ∈ S to another point y ∈ S without leaving the set S. In a sense, it means that

S ⊂ R is composed of points, but has no intervals of the form (a, b) in it. We can state this condition

mathematically in terms of open sets:

Definition: A set S ∈ R is totally disconnected if, for any distinct x, y ∈ S, there exists a pair of

disjoint, open sets A and B such that

x ∈ A , y ∈ B and S ∈ A ∪B .

(Note that A and B are not fixed, i.e., they will depend on x and y.)

Examples:

1. Any finite set of distinct points xi, 1 ≤ i ≤ N , is not only disconnected, but totally disconnected.

2. An infinite set of distinct points xi is also disconnected, for example,

{

1

n

}∞

n=1

. And even the

set {0} ∪
{

1

n

}∞

n=1

is totally disconnected.
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3. The the set of rational numbers Q is totally disconnected (even though it is dense on R).

Proof that the Cantor set C is totally disconnected: We shall use the fact that if C is not

totally disconnected, it must contain at least one interval (a, b) ∈ C, where a < b. (In other words,

you’ll be able to move from a ∈ C to b ∈ C without leaving C.) We shall also use the fact that the

length of an interval (a, b) is b− a > 0.

Now recall the fact that the set C ∈ Cn for all n ≥ 0. Also recall the fact that for a given n ≥ 0, C

is the union of 2n closed intervals Ink of length
1

3n
. Then, for a given n ≥ 0, if the interval (a, b) ∈ C

and C ∈ Cn, it means that the length, L = b− a, of the interval (a, b) must be less than
1

3n
, i.e.,

b− a <
1

3n
. (111)

But the above inequality must be true for all n ≥ 0, i.e., as n → ∞. For the inequality to be true for

all n ≥ 0, we must have a = b, implying that no intervals of the form (a, b), with a < b, exist in C.

Therefore C is totally disconnected.

4. The set C is perfect.

Of course, we’ll need a definition of “perfect sets.”

Definition: A set S ∈ R (or, in general Rn) is perfect if every point x ∈ S is the limit point of a

sequence of other points in S. In other words, for any point x ∈ S, there exists a sequence {yn} ⊂ S,

with yn 6= x for all n, such that lim
n→∞

yn = x.

Examples:

1. A finite set of distinct points {xn}Nn=1 is not perfect.

2. The set of real numbers R is perfect.

3. The interval [0, 1] is perfect.

4. The interval (0, 1) is perfect.

5. The set S =

{

1

n

}∞

n=1

is not perfect.
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6. The set S = {0} ∪
{

1

n

}∞

n=1

is not perfect.

Before we continue with the proof, the idea that the Cantor set C is perfect may seem quite strange.

After all, the Cantor set C has a lot of “holes” in it. How could any point x ∈ C be the limit of a

sequence of other points yn ∈ C? We’ll see....

Proof: Let x ∈ C. Recall that by definition, x ∈ Cn for all n ≥ 0 where each set Cn is a union of 2n

closed intervals of length
1

3n
, i.e.,

Cn = In1 ∪ In2 ∪ · · · ∪ In2n . (112)

This means that x lies in one of the segments Ink. We’ll identify this particular segment as In,k(n), to

indicate that there is a specific index k(n) ∈ {1, 2, · · · , 2n} associated with x for each n.

Let’s now consider the fact that x ∈ Cn+1, i.e., x lies in one of the 2n+1 segments In+1,k. Following

the earlier procedure, we’ll call this segment In+1,k(n+1). The interval In+1,k(n+1) containing x was

produced by a dissection of interval In,k(n) as sketched below. There are two possibilities, depending

on whether x lies on the left third of In,k(n) or the right third. The former case is sketched below.

x
Cn

x

In,k(n)

Cn+1

In+1,m(n+1)In+1,k(n+1)

Whatever the situation, we pick a point yn ∈ C that belongs to the other subinterval In+1,k that came

from In,k(n) but that does not contain x – we’ll identify that interval as In+1,m(n+1). With respect

to the case sketched above, yn would be selected as below.

x
Cn

x

In,k(n)

Cn+1

In+1,m(n+1)In+1,k(n+1)

yn

Since both x and yn are contained in In,k(n), it follows that

|x− yn| ≤
1

3n
. (113)
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But since x and yn belong to different subintervals In+1,k, yn 6= x.

We now repeat the procedure by replacing n with n + 1 above, i.e., employing the fact that

x ∈ Cn+2. It will lie in an interval In+2,k(n+2) which was produced by a dissection of interval In+1,k(n+1).

We’ll then choose a point yn+1 ∈ C that belongs to the other subinterval In+2,k that came from

In+1,k(n+1) but that does not contain x – we’ll identify this interval as In+2,m(n+2). Since both x and

yn+1 are contained in In+1,k(n+1), it follows that

|x− yn+1| ≤
1

3n+1
. (114)

And once again, since x and yn+1 belong to different subintervals In+1,k, yn+1 6= x. We now continue

this procedure indefinitely, letting n → ∞ to produce a set of points {yn} distinct from x but such

that

|x− yn| → 0 as n → ∞ . (115)

In other words,

lim
n→∞

yn = x , (116)

where all points yn 6= x. Therefore, x ∈ C is a limit point of a sequence of points {yn} ∈ C which are

all different from x. Since this is true for all x ∈ C, the set C is perfect.
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