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Abstract
Broad classes of inverse problems in differential and integral equations can be
cast in the following framework: the optimal approximation of a target x of a
suitable metric space X by the fixed point x̄ of a contraction map T on X. The
‘collage method’ attempts to solve such inverse problems by finding an operator
Tc that maps the target x as close as possible to itself. In the case of ODEs,
the appropriate contraction maps are integral Picard operators. In practice,
the target solutions possibly arise from an interpolation of experimental data
points. In this paper, we investigate the suboptimality of the collage method. A
simple inequality that provides upper bounds on the improvement over collage
coding is presented and some examples are studied. We conclude that, at worst,
the collage method provides an excellent starting point for further optimization,
in contrast to more traditional searching methods that must first select a good
starting point.

1. Introduction

In inverse problems one generally wishes to find a mathematical system, appropriate for the
problem at hand, that admits a known function (or measure, etc) as an approximate solution.
We have been concerned with a class of inverse problems that may be treated within the
framework of Banach’s theorem for contraction mappings on complete metric spaces [10, 13].
Given an appropriate metric space X and a target x ∈ X, one seeks a contractive operator
T : X → X with fixed point x̄ ∈ X that approximates x to a suitable accuracy.

This viewpoint of inverse problems arose from early works in fractal image coding
[8, 9, 15]. Here, (X, d) is a complete metric space of image functions, u : D → R, where
D ⊂ R2 (or Z2) represents the pixel space or support of u. The action of a contractive fractal
operator T on u is to produce a union of N greyscale-modified and spatially contracted copies
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of subsets of u. As a result, the fixed point function ū = T ū is locally self-similar: ū is a
union of distorted copies of subsets of itself.

The original motivation of fractal coding lay in the fact that only the parameters defining
the operator T need to be stored. The approximation ū to a target image u is then generated
by the iteration sequence un = T nu0, where u0 is any starting image, for example, a blank
computer screen, i.e., u0 = 0. Moreover, excellent approximations to the image u could be
obtained by using a very small amount of data to define the fractal operator T, resulting in
significant image data compression.

In fractal image coding, however, the problem of finding a contractive operator that
minimizes the approximation error d(x, x̄) is extremely complicated because of the nature
of fractal operators and, consequently, the self-similar nature of their fixed point functions.
In fact, Ruhl and Hartenstein [18] showed that this type of fractal image coding is NP-hard.
For this reason, fractal image coding methods have relied on a reformulation of the inverse
problem that is based on the so-called collage theorem [1], a simple consequence of Banach’s
theorem. In these methods, one searches for a contractive map Tc that minimizes the so-called
collage distance d(x, T x). In the fractal coding literature, this minimization procedure is
known as collage coding.

Collage coding is a greedy algorithm [18] as it seeks to construct a self-similar
approximation ū to a target u in one pass. It is also necessarily suboptimal since minimization of
d(x, T x) does not imply minimization of the approximation error d(x, x̄). Several researchers,
for example [7, 20], tried to improve on the fixed point approximations yielded by fractal
collage coding but with very little, if any, gain.

We have already shown [13] that various parameter estimation problems for differential
equations (see, for example, [12, 17, 19] and, more recently, [16]) can be cast into the above
class of inverse problems involving contraction mappings. In a typical parameter estimation
problem, one is given a set (or sets) of data points xi that are assumed to lie on a solution curve
(or sets of curves) x(t) of a differential equation of the form ẋ = f (x). The problem is to find
f (x), which is assumed to have a functional form suitable for the problem being studied, e.g.,
the polynomial of degree n in x. For a given choice of f and initial values, a solution curve
x̄(t) is then obtained numerically by integration and then compared with the target curve x(t).
The search for an optimal f is performed numerically in an appropriate space of parameters,
e.g., the set of coefficients c0, . . . , cn that define the polynomial vector field f (x). Various
search methods have been employed.

From the viewpoint of contraction maps and fixed points, these parameter estimation
problems search for a vector field f that defines a Picard operator T with fixed point x̄(t) that,
in turn, approximates the target function x(t) as well as possible. We emphasize that most
of the methods in the literature concentrate on minimizing the approximation error d(x − x̄)

while the collage method instead minimizes the collage distance d(x, T x), a useful change
since one cannot find x̄ for a general T.

In [13], we showed that collage coding is naturally implemented into an inverse problem
scheme for ODEs based on the Picard contraction mapping. As well, we showed rigorously
that the collage method can be performed in L2, which facilitates numerical computations.
After writing that paper, however, we discovered that a collage coding method had, in fact,
been used for simple ODE problems, e.g. [11], although justification of this method in terms
of contraction maps as well as the use of the L2 norm was not acknowledged until [13].

The purpose of this paper is to investigate the suboptimality of collage coding for
inverse problems involving ODEs as well as to consider some additional applications that
were not discussed in [13]. We first present a very simple inequality that provides upper
bounds on the improvement over collage coding, whether it be fractal or non-fractal. Indeed,
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this inequality explains the low gains over collage coding obtained in earlier fractal image
coding investigations. We then examine a few simple ODE inverse problems and observe
that the collage method, although theoretically suboptimal, nevertheless yields excellent
approximations.

The structure of this paper is as follows. In section 2, we review the basic mathematical
results that lie behind the inverse approximation of fixed points of contraction maps. The
application of this method to systems of first-order ODEs is then discussed briefly. We
then examine an interesting inverse problem for damped harmonic oscillations as originally
formulated by Groetsch [11]—in terms of a second-order integral operator—and show, as
expected, that Groetsch’s method is precisely collage coding. In section 3, we examine the
suboptimality of collage coding and present our simple inequality. We then apply this result to
some inverse problems for ODEs, including Groetsch’s example as well as an inverse problem
in ecological modelling that has been studied in the literature [16]. Essentially the conclusion
of this paper is that collage coding for ODE inverse problems performs very well, as is the case
for fractal coding. More importantly—in contrast to the usual search methods performed in
the literature—it provides an excellent starting point from where additional searching could be
performed. In practice, however, the improvements are generally so small that it is generally
not worth the effort to even try to compute them.

2. Some mathematical background

In this section, we restrict our discussion of technical details to a minimum. Let (X, d)

denote a complete metric space and Con(X) an appropriate set of contraction maps on X: if
T ∈ Con(x) then T : X → X and there exists a c ∈ [0, 1) such that

d(T x, T y) � cd(x, y) ∀ x, y ∈ X. (1)

(In this discussion, we are not concerned about the properties of the set Con(X).) From
Banach’s fixed point theorem, there is a unique x̄ ∈ X such that T x̄ = x̄.

Let FP(X) denote the set of all fixed points of the contraction maps in Con(X), i.e.

FP(X) = {x̄ ∈ X | x̄ = T x̄ for some T ∈ Con(X)}.
We now seek to approximate a target element x ∈ X by fixed points x̄ ∈ FP(X). The

error of this approximation will be given by d(x, x̄). The optimal fixed point, x̄o (assuming
that at least one exists), minimizes the error, i.e.

d(x̄o, x) � d(x̄, x) ∀ x̄ ∈ FP(X). (2)

As mentioned in the introduction, the direct determination of optimal fixed points is generally
infeasible. Instead, one usually resorts to collage coding. The basis of this method rests in the
collage theorem [1], a simple consequence of Banach’s theorem.

Proposition 1. Let x ∈ X and T ∈ Con(X) with fixed point x̄ and contraction factor
c ∈ [0, 1). Then

d(x, x̄) � 1

1 − c
d(x, T x). (3)

Proof.

d(x, x̄) � d(x, T x) + d(T x, x̄)

� d(x, T x) + cd(x, x̄).

A rearrangement yields the desired result. �
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Collage coding seeks to minimize the collage distance d(x, T x): by making the collage
distance small, the approximation error d(x, x̄) is made small (subject to some controls that
we may have to put on the contraction factors c, for example, c � 0.9).

There is an interesting anti-collage theorem [20] that yields a lower bound to the
approximation error in terms of the collage error. Once again, it is a simple consequence
of Banach’s theorem:

Proposition 2. Let x ∈ X and T ∈ Con(X) with fixed point x̄ and contraction factor
c ∈ [0, 1). Then

d(x, x̄) � 1

1 + c
d(x, T x). (4)

Proof.

d(x, T x) � d(x, x̄) + d(x̄, T x)

� d(x, x̄) + cd(x, x̄).

A rearrangement yields the desired result. �

To summarize, we have the following important bounds on the collage distance:
1

1 + c
d(x, T x) � d(x, x̄) � 1

1 − c
d(x, T x). (5)

2.1. The inverse problem for systems of first-order ODEs

We seek an ODE initial value problem,

ẋ(t) = f (x, t), x(0) = x0, (6)

that admits a target solution x(t) as an exact or approximate solution, where f is restricted to
a class of functional forms, e.g. affine, quadratic. Associated with the initial value problem in
equation (6) is the Picard integral operator T:

(T u)(t) = x0 +
∫ t

0
f (u(s), s) ds. (7)

It is well known [5] that, subject to appropriate conditions on the vector field f , the operator T
is contractive over an appropriate Banach space C(I ) of functions supported over an interval I
containing the point t0 = 0. As well, the fixed point ū of T is the unique solution to the IVP
in (6). In [13], we showed that T is also contractive in the L2 metric, which is much more
convenient to work with. Given a target function x(t), t ∈ [0, 1], say, the L2 collage distance
has the form

� =
(∫ 1

0
(x(t) − (T x)(t))2 dt

) 1
2

(8)

=
(∫ 1

0

[
x(t) − x0 −

∫ t

0
f (x(s), s) ds

]2

dt

) 1
2

. (9)

Considering f (x(s), s) to be a function of certain parameters, one can then minimize the
collage distance � in equation (9). For example, if we assume that f is an autonomous
polynomial vector field,

f (x) =
N∑

k=0

ckx
k, (10)
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then the minimization of the squared L2 collage distance yields a set of simultaneous linear
equations in the unknowns ck . (We may also consider the initial value x0 as an unknown,
in which case an additional linear equation appears.) The coefficients of this linear system
involve generalized moments of the target function x(t) having the form

gk(t) =
∫ t

0
[x(s)]k ds. (11)

The parameter values solving this system define a Picard operator Tc with attractor function
x̄c(t). We shall refer to x̄c(t) as the collage attractor. For details, we refer the reader to [13].

Finally, we mention that the minimization of the collage distance along with the condition
that f belong to some restricted class of functions represents a kind of regularization of the
inverse problem associated with equation (6).

2.2. An inverse problem in structural dynamics

In section 3.4 of [11], the following parameter estimation problem for a damped harmonic
oscillator is considered. From some observed measurements (ti , x(ti)) and knowledge of the
initial position x(0) = x0 and velocity ẋ(0) = v0, one wishes to determine the coefficients a
and b of the second-order linear ODE

ẍ + aẋ + bx = 0, x(0) = x0, ẋ(0) = v0, (12)

which admits a solution x(t) that interpolates the above data points as closely as possible.
This problem can easily be recast into the form of example 1 by transforming the second-order
DE into a system of first-order DEs. However, in [11], equation (12) is integrated twice.
The resulting integral equation along with the sample measurements leads to a least-squares
minimization problem to determine a and b. We now show that this method is precisely
collage coding for a contractive operator.

Let us consider the following family of second-order ODEs that includes equation (12)
as a special case:

ẍ(t) = f (t, x(t), ẋ(t)), x(0) = x0, ẋ(0) = v0. (13)

Integrating twice gives

x(t) = x0 + v0t +
∫ t

0
(t − s)f (s, x(s), ẋ(s)) ds, t > 0. (14)

In other words, the solution x(t) is the fixed point of the integral Picard operator T defined by

(T u)(t) = x0 + v0t +
∫ t

0
(t − s)f (s, u(s), u̇(s)) ds. (15)

Now define

I = [0, δ], δ > 0,

d∞(x1, x2) = sup
t∈I

{|x1 − x2| + |ẋ1(t) − ẋ2(t)|}, ∀ x1, x2 ∈ C̄1(I ),

d2(x1, x2) =
(∫ δ

0
(|x1 − x2| + |ẋ1(t) − ẋ2(t)|)2 dt

) 1
2

, ∀ x1, x2 ∈ C̄1(I ),

C̄1(I ) = {x ∈ C1(I ) | ‖x‖∞ � M} and D = {(t, x, ẋ) | t ∈ I, ‖x‖∞ � M}.
In appendix A, we prove the following result.
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Theorem 3. Suppose that f satisfies

(i) max(t,x,ẋ)∈D |f (t, x, ẋ(t))| � M
(δ+1)δ

and
(ii) the following Lipschitz condition on D: for all (t1, x1, ẋ1) and (t2, x2, ẋ2) in D, there

exist non-negative real numbers K1 and K2, not both zero, such that |f (t1, x1, ẋ1) −
f (t2, x2, ẋ2)| � K1|x1 − x2| + K2|ẋ1 − ẋ2|.

Let K = max(K1,K2) > 0.

(a) Define

‖x‖∞,λ = sup
t∈I

e−λKt |x(t)|.

Then the Picard operator T in (15) is contractive on the Banach space (C̄1(I ), ‖·‖∞,2(δ+1)).
(b) Define

‖x‖2,λ =
(∫

I

(eλKtx(t))2 dt

) 1
2

.

Then the Picard operator T in (15) is contractive on (C̄1(I ), ‖ · ‖2,(δ+1)2δK).

The norms in the theorem are often referred to as ‘Bielecki norms’ due to Bielecki [3].
Given the conditions on f in the theorem, the weighting allows one to establish an existence
result regardless of δ, using the fact that such a weighted norm is equivalent to its associated
standard norm:

‖x‖·,λ � ‖x‖· � eλKδ‖x‖·,λ, (16)

However, using the weighted L2 norm in the collage theorem, for example, will in general
lead to a quite complicated minimization problem for parameters of the differential equation
because the Lipschitz constant K will depend upon the parameters of f . The most convenient
norm to work with is the standard L2 norm, even though contractivity in this norm depends
on δ. From equation (16), we see that if the L2 collage distance d2(x, T x) < ε, then the
associated weighted collage distance d2,λ(x, T x) < ε.

We now return to the damped linear oscillator problem of equation (12). In [11], the n
observed data points (ti , xi) are assumed to be evenly spaced in time, with ti = ih, 1 � i � n.
The integral in the second-order Picard operator is then integrated by parts and the resulting
integrals are approximated with the trapezoid rule. The squared L2 collage distance ‖x−T x‖2

2
is given by the expression (using the notation of [11])

E(a, b) =
n∑

k=1

(Ek(a, b))2, (17)

where

Ek(a, b) = xk − x0 − v0kh + a


 k∑

j=1

xjh − xkh

2
− x0kh +

x0h

2




+ b


k−1∑

j=1

xj (k − j)h2 +
x0kh2

2


 . (18)

(Note that there is a term missing in the expression for Ek on p 58 in [11].) Minimization of
E(a, b) yields a set of linear equations in a and b.

As Groetsch qualifies in [11], the use of the trapezoidal rule in the Picard integral
operator is a very simple approximation. Nevertheless, it yields rather good results. We
have investigated the use of other interpolation schemes. Not surprisingly, better estimates
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of the parameters are yielded with more sophisticated interpolation schemes. We also finally
mention that, if necessary, the initial velocity v0 could be considered as an unknown parameter.
The extension of the above method to determine an optimal v0 value along with a and b is
straightforward.

3. Suboptimality of collage coding

In general, suppose that we perform collage coding of the target x ∈ X, i.e., we find a mapping
Tc ∈ Con(X) (assuming that at least one exists) that minimizes the collage distance d(x, T x).
Then

d(x, Tcx) � d(x, T x) ∀ T ∈ Con(X).

Let x̄c ∈ FP(X) denote the fixed point of Tc, i.e. Tcx̄c = x̄c. We shall refer to x̄c as the
collage attractor. By our definition of x̄o in equation (2),

d(x, x̄o) � d(x, x̄c). (19)

In other words, collage coding is suboptimal.
The following result establishes an upper bound to the distance between x̄o and x̄c.

Proposition 4.

d(x̄o, x̄c) � 2

1 − cc
d(x, Tcx), (20)

where cc is the contraction factor of Tc.

Proof.

d(x̄o, x̄c) � d(x̄o, x) + d(x, x̄c)

� d(x̄c, x) + d(x, x̄c).

The desired result follows from the collage theorem, cf equation (3). �

Note that x̄o may be replaced by x̄ ′, any fixed point that approximates x no worse than x̄c

does, i.e., d(x, x̄ ′) � d(x, x̄c). Then

d(x̄ ′, x̄c) � 2

1 − cc
d(x, Tcx). (21)

In other words, once a collage attractor x̄c corresponding to a contraction map Tc is found,
all fixed points x̄ ∈ FP(X) that approximate x as well as x̄c lie in a closed ball of radius

2
1−cc

d(x, Tcx) centred at x̄c. Note that we can make this radius arbitrarily large by allowing
the contraction factors c of the maps in Con(X) to approach 1.

The improvement in the optimal attractor error from the collage error can also be bounded
as follows:

Proposition 5.

0 � d(x, x̄c) − d(x, x̄o) � 2

1 − cc
d(x, Tcx), (22)

where cc is the contraction factor of Tc.

The proof of this result follows immediately from proposition 4.
In the fractal image coding literature there have been some attempts to improve the

results of collage coding by starting with the collage attractor x̄c and searching for attractors
x̄ ∈ FP(X) that lower the approximation error d(x, x̄) [7, 20]. These searches are performed
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Table 1. Minimal collage and near-optimal parameters for x(t) = (t + 1)2, linear f .

f x0 ‖x − T x‖2 ‖x − x̄‖2

x0 constrained, collage 1.403 641 88 + 0.690 440 06x 1 0.005 806 99 0.006 057 84
x0 constrained, near-optimal 1.403 056 56 + 0.689 931 49x 1 0.005 924 01 0.005 878 51
x0 variable, collage 1.471 518 99 + 0.664 556 96x 0.988 396 62 0.004 192 96 0.004 183 00
x0 variable, near-optimal 1.471 472 53 + 0.664 547 04x 0.988 432 82 0.004 193 00 0.004 182 67

in the fractal code space � ⊂ Rn of parameters that define the fractal operator T (subject to
the condition that T be contractive). Implicitly assumed in these studies is the continuity of
the respective attractor functions x̄ with respect to these parameters, originally proved in [4].

For example, Dudbridge and Fisher [7] used a Nelder–Mead simplex algorithm to perform
such a search. Some improvements in the approximation error d(x, x̄) were found but they
were generally quite small. In addition, the fixed point approximations yielded by this search
were not very far away from the collage attractor x̄c (as expected by the continuity property of
the attractors). In [20], gradient descent methods were used to perform the search. However,
no significant improvements were found over the simplex algorithm search of [7]. (In [20], the
differentiability of attractor functions ū with respect to fractal parameters was first established
in order to justify the use of gradient descent methods. This, in itself, was a very interesting
mathematical result, especially since the partial derivatives are vector functions. Nevertheless,
there was no practical advantage to using gradients.)

3.1. Application to inverse problems for ODEs

Without loss of generality, we focus our discussion on the inverse problem of section 2.1,
using polynomial vector fields as defined in equation (10). The Picard integral operators T
and their corresponding attractor functions x̄(t) are implicitly defined by the parameters ck

of equation (10). In other words, the ck (subject to conditions that ensure the contractivity
of the T—we skip the complicated details here (see [13])) form the parameter space � over
which any optimization would have to be performed. As mentioned earlier, minimization of
the squared L2 collage distance in equation (9) yields the collage attractor x̄c(t). We now seek
to find attractor functions x̄(t) that approximate a target function x(t) better than x̄c(t) does.

Unless one works with a simple choice of the vector field f (x), so that the general solution
of the ODE(s) in terms of the parameters in f (x) is readily available, a gradient approach to
this problem would be computationally intensive. In general, the computation of gradients
of Picard integral operators with respect to the ck is quite cumbersome, a situation similar
to that of fractal coding [20]. (The computation of these gradients is discussed in appendix
B.) And at each step in the iterative gradient descent process, full knowledge of the current
approximation/solution is required. (Practically speaking, such a solution would be typically
known numerically as a discrete sequence.) Therefore, in the study presented below we have
employed a simple Nelder–Mead-type parameter search to seek out local attractors that yield
better approximations to a target x.

Let us consider the inverse ODE problem of section 2.1, with target function x(t) =
(t + 1)2 on [0, 1]. Note that this target satisfies the initial value problem ẋ(t) = 2

√
x, x(0) = 1.

We first look for a linear initial value problem of the form

ẋ = c0 + c1x, x(0) = x0,

with solution as close as possible to our target function. The results obtained by minimizing
the L2 collage distance ‖x − T x‖2 are presented in table 1. There are two cases: (i) treating
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x0 = 1 as fixed, (ii) treating x0 as a variable to be optimized. (The entries are presented to eight
decimal places to permit an easy comparison.) Table 1 also presents the near-optimal results
obtained by performing, in each case, a simplex parameter search starting at the respective
collage attractors xc(t). In each case, the approximation error is decreased although, as
expected, the collage distance increases. In all cases, the improvement over collage coding is
rather small.

In the case of linear vector fields, one can actually attempt to solve the direct problem by
finding the best L2 approximation

(t + 1)2 ∼= A + B exp(Ct), t ∈ [0, 1]. (23)

The values A,B,C determine the parameters c0, c1 and x0. However, the optimal parameters
A,B,C cannot be determined in closed algebraic form, so we must resort to numerical
methods.

In the case when x0 is treated as a parameter, we find, to eight decimal places, that

A = −2.214 248 86, B = 3.202 681 68, C = 0.664 547 04. (24)

These values coincide with the near-optimal result of table 1 (fourth row), where

A = −c0

c1
, B = x0 +

c0

c1
, C = c1. (25)

The upper bound appearing in propositions 4 and 5 may now be computed:

2

1 − cc
‖x − Tcx‖2 = 2(0.004 192 96)

1 − 1
2

105
158

= 0.012 559 01, (26)

where

cc = c1 = 105

158
= 0.664 556 96.

We expect this bound not to be sharp. Indeed, we observe that the improvement to collage
coding,

d(x, x̄c) − d(x, x̄o) = 0.000 000 33,

is smaller than this bound by more than four orders of magnitude! We expect a similar lack of
sharpness for the approximation error d(x̄o, x̄c).

Each of the methods described above yields a vector field f (x) for which the target
function x(t) is an approximate solution to the DE ẋ = f (x). In the examples considered
above, the vector fields are good approximations to the true vector field. This is not surprising
since the original proof of the collage method [13] relied on the Weierstrass approximation of
f (x). To illustrate, the target function x(t) = (t + 1)2 satisfies the IVP,

ẋ = 2
√

x, x(0) = 1. (27)

The best L2 linear approximation to the vector field 2
√

x over the interval 1 � x � 4 is given
by

g(x) = 40

27
+

88

135
x ∼= 1.481 + 0.652x. (28)

The vector fields listed in table 1 are seen to be quite close to this result.
We now consider the case of quadratic vector fields for this problem, i.e.,

ẋ = c0 + c1x + c2x
2, x(0) = x0, (29)

i.e., N = 2 in equation (10). The results are presented to nine decimal places in table 2 in
order to permit an easy comparison. Once again, it is seen that the improvements to collage
coding are very small.
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Table 2. Collage and near-optimal parameters for x(t) = (t + 1)2, quadratic f .

f x0 ‖x − T x‖2 ‖x − x̄‖2

x0 constrained, collage 1.060 837 408 + 1.038 471 231x 1 0.000 695 750 0.000 719 857
− 0.078 366 472x2

x0 constrained, near-optimal 1.060 617 408 + 1.038 269 231x 1 0.000 704 726 0.000 702 958
− 0.078 265 472x2

x0 variable, collage 1.092 978 223 + 1.012 130 627x 0.988 303 740 0.000 527 977 0.000 526 460
− 0.073 287 330x2

x0 variable, near-optimal 1.092 965 623 + 1.012 121 103x 0.988 308 840 0.000 527 981 0.000 526 454
− 0.073 281 930x2

The best L2 quadratic approximation to the vector field 2
√

x over the interval 1 � x � 4
is given by

g(x) = 620

567
+

2848

2835
x − 40

567
x2 ∼= 1.093 + 1.005x − 0.071x2. (30)

The vector fields listed in table 1 are seen to be quite close to this result.
Finally, we examine the inverse problems studied in [16], wherein the parameter values

of certain ecological models are estimated with a Nelder–Mead-type search method. In that
paper, ‘synthetic data’ are generated by numerically solving the differential equations of a
proposed model with specified parameters. Gaussian noise is added to the numerical solution,
which is then sampled at a number of uniformly distributed points. These sample points
are fed into the parameter estimation process outlined in [16] in order to determine optimal
parameter values for differential equations of the proposed form. We emphasize that, to the
best of our understanding, the estimation method in [16] involves the minimization of the
fixed point approximation error ‖x − x̄‖, as opposed to minimization of the collage error
‖x − T x‖.

One particular case studied in [16] is the SML model,

dS

dt
= −KsSX, (31)

dX

dt
= KcSX − Km

X2

S
, (32)

where S(t) and X(t) represent the substrate concentration and biomass at time t and the
parameters Ks,Kc and Km are all positive. Of course, the Nelder–Mead-type search of [16]
determines the near-optimal parameters for system (31)–(32) to have a solution as close as
possible to the noised numerical solution. Increasing the standard deviation of the noise
distribution decreases the quality of the fit to the parameters for the system with zero-noise
solution. The Gaussian distribution had zero mean and peak magnitude as large as the peak
value of the variable to which it was added.

We have employed collage coding on this problem using the same test parameters
employed in [16]: Kb = 0.0055,Kc = 0.0038 and Km = 0.000 55. The system was
solved numerically: 100 sampled data points (with Gaussian noise of low-amplitude ε added)
were fitted to a 10-degree polynomial and collage coding was then employed. The sampled
data points for S(t) were also used to fit the function S(t)−1 that appears in (32).

We make two comments before presenting the results in table 3: (i) Nelder–Mead-type
searches are typically quite time- and resource-consuming, while the collage coding method



Inverse problems for ODEs using contraction maps and suboptimality of the ‘collage method’ 987

Table 3. Collage coding results for the SML problem of [16].

ε Kb Kc Km

0.00 0.005 500 000 0.003 800 000 0.000 550 000
0.01 0.005 520 150 0.003 739 329 0.000 531 034
0.03 0.005 560 584 0.003 617 699 0.000 492 936
0.05 0.005 601 198 0.003 495 669 0.000 454 616
0.10 0.005 703 507 0.003 188 687 0.000 357 837

is quite fast, and (ii) nowhere in [16] is the initial guess at the parameters, i.e. the seed for
the algorithm, specified. This second point is quite important, as the results of the collage
coding method provide an excellent initial guess for further optimization, which may not even
be warranted because the results are so close.

4. Concluding remarks

In this paper we have investigated the suboptimality of collage coding for inverse problems
for ODEs. We first presented a very simple inequality that provides an upper bound on the
improvement over collage coding. Indeed, this inequality explains the low improvements
to collage coding obtained in earlier investigations of fractal image coding. In the case of
ODEs, the improvements to collage coding are found to be very small. We conjecture that
any negative effects of the ‘greediness’ of the collage coding method for ODEs are minimal
since solutions to ODEs—also fixed points to contractive Picard integral operators—possess
a great deal of regularity. This is in contrast to the complexity of self-similar functions that
are fixed points of fractal operators. An important consequence is that the collage method
provides excellent approximations in one procedure, as opposed to more traditional methods
that must first select a good starting point before undertaking a searching procedure.
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Appendix A

In this appendix, we prove theorem 3, establishing the contractivity of the Picard operator (15)
in both the weighted sup and L2 norms.

Without loss of generality, setting x0 = ẋ0 = 0, we have

‖T x‖∞ = sup
t∈I

(∣∣∣∣
∫ t

0
(t − s)f (s, x(s), ẋ(s)) ds

∣∣∣∣ +

∣∣∣∣
∫ t

0
f (s, x(s), ẋ(s)) ds

∣∣∣∣
)

� sup
t∈I

∫ t

0
(|t − s| + 1)|f (s, x(s), ẋ(s))| ds

� M

(δ + 1)δ
sup
t∈I

∫ t

0
(δ + 1) ds

� M
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and
d(T x)

dt
(t) =

∫ t

0
f (s, x(s), x ′(s)) ds ∈ C(I).

By this construction, T : C̄1(I ) 
→ C̄1(I ).
We first prove theorem 3(a), contractivity with respect to the weight sup norm.

Proof. For t ∈ I ,

|T x1 − T x2| +

∣∣∣∣d(T x1)

dt
− d(T x2)

dt

∣∣∣∣
=

∣∣∣∣
∫ t

0
(t − s)

(
f

(
s, x1(s),

dx1

ds
(s)

)
− f

(
s, x2(s),

dx2

ds
(s)

))
ds

∣∣∣∣
+

∣∣∣∣
∫ t

0
f

(
s, x1(s),

dx1

ds
(s)

)
− f

(
s, x2(s),

dx2

ds
(s)

)
ds

∣∣∣∣
�

∫ t

0
(|t − s| + 1)

∣∣∣∣f
(

s, x1(s),
dx1

ds
(s)

)
− f

(
s, x2(s),

dx2

ds
(s)

)∣∣∣∣ ds.

Now use the fact that 0 � |t −s| � t � δ and apply the Lipschitz condition (ii) of the theorem.

|(T x1) − (T x2)| +

∣∣∣∣d(T x1)

dt
− d(T x2)

dt

∣∣∣∣
�

∫ t

0
(δ + 1)

∣∣∣∣f
(

s, x1(s),
dx1

ds
(s)

)
− f

(
s, x2(s),

dx2

ds
(s)

)∣∣∣∣ ds

� (δ + 1)

∫ t

0

(
K1|x1(s) − x2(s)| + K2

∣∣∣∣dx1

ds
(s) − dx2

ds
(s)

∣∣∣∣
)

ds

� (δ + 1)K

∫ t

0
eλKs e−λKs

(
|x1(s) − x2(s)| +

∣∣∣∣dx1

ds
(s) − dx2

ds
(s)

∣∣∣∣
)

ds

� (δ + 1)Kd∞,λ(x1, x2)

∫ t

0
eλKs ds

� (δ + 1)Kd∞,λ(x1, x2)
1

λK
(eλKt − 1)

� δ + 1

λ
eλKtd∞,λ(x1, x2).

Hence, for t ∈ I ,

e−λKt

(
|(T x1) − (T x2)| +

∣∣∣∣d(T x1)

dt
− d(T x2)

dt

∣∣∣∣
)

� δ + 1

λ
d∞,λ(x1, x2)

Setting λ = 2(δ + 1), we conclude that

‖T x1 − T x2‖∞,2(δ+1) � 1
2‖x1 − x2‖∞,2(δ+1). �

We first prove theorem 3(a), contractivity with respect to the weight sup norm.

Proof. Borrowing from the previous proof, we have

‖(T x1) − (T x2)‖2
2,λ =

∫
I

e−2λKt

[
|T x1 − T x2| +

∣∣∣∣d(T x1)

dt
− d(T x2)

dt

∣∣∣∣
]2

dt

� (δ + 1)2K2
∫ δ

0
e−2λKt

[∫ t

0
eλKs e−λKs

(
|x1(s) − x2(s)|
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+

∣∣∣∣dx1

ds
(s) − dx2

ds
(s)

∣∣∣∣
)

ds

]2

dt

� (δ + 1)2K2
∫ δ

0
e−2λKt

[(∫ t

0
[eλKs]2 ds

) 1
2

×
(∫ t

0
e−2λKs

(
|x1(s) − x2(s)| +

∣∣∣∣dx1

ds
(s) − dx2

ds
(s)

∣∣∣∣
)2

ds

) 1
2




2

dt

= (δ + 1)2K2
∫ δ

0
e−2λKt

(
e2λKt − 1

2λK

)

×
∫ t

0
e−2λKs

(
|x1(s) − x2(s)| +

∣∣∣∣dx1

ds
(s) − dx2

ds
(s)

∣∣∣∣
)2

ds dt

� (δ + 1)2K

2λ

∫ δ

0

∫ t

0
e−2λKs

(
|x1(s) − x2(s)| +

∣∣∣∣dx1

ds
(s) − dx2

ds
(s)

∣∣∣∣
)2

ds dt

= (δ + 1)2K

2λ

∫ δ

0

∫ s

δ

e−2λKs

(
|x1(s) − x2(s)| +

∣∣∣∣dx1

ds
(s) − dx2

ds
(s)

∣∣∣∣
)2

dt ds

= (δ + 1)2K

2λ

∫ δ

0
(δ − s) e−2λKs

(
|x1(s) − x2(s)| +

∣∣∣∣dx1

ds
(s) − dx2

ds
(s)

∣∣∣∣
)2

ds

� (δ + 1)2δK

2λ
‖x1 − x2‖2

2,λ.

Now pick λ = (δ + 1)2δK to conclude that

‖T x1 − T x2‖2,(δ+1)2δK � 1√
2
‖x1 − x2‖2,(δ+1)2δK .

�

Appendix B

One can construct a gradient descent scheme for the inverse problem in ordinary differential
equations. Let us assume that the ODE is autonomous and that f (x) is polynomial in x, that is

f (x) =
N∑

k=0

ckx
k. (33)

Then the fixed point ū(t) of the Picard operator (7) satisfies

ū(t) = x0 +
∫ t

t0

f (ū(s), s) ds

= x0 +
∫ t

t0

N∑
k=0

ck(ū(s))k ds

= x0 +
N∑

k=0

ckgk(t), (34)

where gk(t) = ∫ t

0 (ū(s))k ds, k = 0, . . . , N . Now consider ū(t) to be a function of t as well
as the parameters c1, . . . , cN and x0. The squared L2 error in approximating a given target
function x(t) by the fixed point ū(t) is E(c1, . . . , cN , x0) = ‖x− ū‖2, from which we calculate
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∂E

∂cl

= −2

〈
∂ū

∂cl

, x − ū

〉
, (35)

∂E

∂x0
= −2

〈
∂ū

∂x0
, x − ū

〉
. (36)

Hence we find the partial derivative of ū(t) with respect to each parameter. We have

∂ū

∂cl

= gl +
N∑

k=0

ck

∂gk

∂cl

= gl +
N∑

k=1

kck

∫ t

0
(ū(s))k−1 ∂ū

∂cl

(s) ds,

which upon differentiation with respect to t gives

d

dt

(
∂ū

∂cl

)
= dgl

dt
+

N∑
k=1

kck (ū(t))k−1 ∂ū

∂cl

(t),

= (ū(t))k +
N∑

k=1

kck (ū(t))k−1 ∂ū

∂cl

(t). (37)

Equation (37) is a first-order linear DE with solution

∂ū

∂cl

=
∫ t

0
(ū(s))l exp

(
N∑

k=1

kck(gk−1(t) − gk−1(s)) ds

)
. (38)

Now differentiate (34) with respect to x0 to get

∂ū

∂x0
= 1 +

N∑
k=0

ck

∂gk

∂x0

= 1 +
N∑

k=1

kck

∫ t

0
(ū(s))k−1 ∂ū

∂x0
(s) ds,

which upon differentiation with respect to t gives

d

dt

(
∂ū

∂x0

)
=

N∑
k=1

kck(ū(t))k−1 ∂ū

∂x0
(t). (39)

The solution to (39) is

∂ū

∂x0
= exp

(
N∑

k=1

kckgk−1(t)

)
. (40)

A gradient descent scheme now follows by putting together (35), (36), (38) and (40). The
computational difficulty is that the construction of the gradient vector requires knowledge of
the solution at the current parameter values. This solution is likely only known numerically,
which means that the various integrals involving it will have to be calculated numerically,
potentially breeding non-negligible numerical error.
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