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Fractal-Wavelet Image Denoising Revisited
Mohsen Ghazel, George H. Freeman, and Edward R. Vrscay

Abstract—The essence of fractal image denoising is to predict
the fractal code of a noiseless image from its noisy observation.
From the predicted fractal code, one can generate an estimate of
the original image. We show how well fractal-wavelet denoising
predicts parent wavelet subtress of the noiseless image. The per-
formance of various fractal-wavelet denoising schemes (e.g., fixed
partitioning, quadtree partitioning) is compared to that of some
standard wavelet thresholding methods. We also examine the use
of cycle spinning in fractal-based image denoising for the purpose
enhancing the denoised estimates. Our experimental results show
that these fractal-based image denoising methods are quite com-
petitive with standard wavelet thresholding methods for image de-
noising. Finally, we compare the performance of the pixel- and
wavelet-based fractal denoising schemes.

Index Terms—Fractal image coding, fractals, image denoising,
image restoration.

I. INTRODUCTION

I N this paper, we present some results of ongoing work on
fractal-based image denoising methods. The essence of these

methods is to predict the fractal code of a noiseless image from
its noisy observation. Such a prediction can be performed ei-
ther in the pixel domain [9] or in the wavelet domain [8]. The
predicted fractal code is then used to generate a denoised esti-
mate of the original image by iteration of the associated fractal
transform.

In [8] and [9], experimental results showed that our fractal-
based methods significantly reduced the noise and errors in the
noisy images (in all cases, the noiseless image was known).
This suggests that the prediction of the fractal code of the noise-
less image works quite well: As we report below, the prediction
method produces assignments that are near optimal, i.e., they
generally lie within the top one or two percent of the best avail-
able domain subtrees from the image, and, as expected, with
increasing noise variance, the deviation of predicted subtrees
from the most optimal ones increases. This portion of our work
was inspired by some recent studies of the statistical properties
of domain-range matching in images [1]. In general, there are
many domain subtrees that match a given range subtree very
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Fig. 1. Two-dimensional fractal-wavelet transform.

well. In other words, images generally do possess a high degree
of local self-similarity.

II. FRACTAL-WAVELET IMAGE DENOISING

A. Basics of Fractal-Wavelet Image Coding

Fractal-wavelet (FW) transforms, discovered independently
by a number of researchers ([5], [6], and [12] to name only
a few), were introduced in an effort to reduce the blockiness
and computational complexity that are inherent in fractal image
compression. Their action involves a scaling and copying of
wavelet coefficient subtrees to lower subtrees, quite analogous
to the action of fractal image coders in the spatial domain.

Recall that the discrete wavelet transform (DWT) coefficients
of a two-dimensional (2-D) signal (image) are conveniently ar-
ranged in a standard matrix fashion, the first few blocks of which
are shown in Fig. 1 (here, we are assuming that the 2-D wavelet
basis functions are constructed in the usual way by using suit-
able tensor products of one-dimensional scaling and wavelet
functions—see [14]). Each of the blocks ,

, for some , contains coefficients ,
respectively. The three collections of blocks comprise the fun-
damental horizontal, vertical, and diagonal quadtrees of the co-
efficient tree. Now, consider any wavelet coefficient ,

in this matrix and the unique subtree, denoted by ,
with this element as its root.

The “collage coding” procedure to produce the FW code
for an image proceeds as follows: First consider a fixed set
of parent-child level values , where . Then,
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for each uncoded child subtree, , ,
find the parent subtree and the corresponding scaling
coefficient so that the so-called “collage distance”

(1)

is minimized. The resulting FW code consists of the following.
1) The parent-child index pair .
2) The wavelet coefficients , for : A

total of coefficients. These wavelet coefficients are un-
changed by the FW transform.

3) The scaling factors and parent subtree indices, ,
for all elements in each of the three blocks , for

: A total of scaling factors and
indices.

In the standard FW scheme (as proposed in [5] and [12], for ex-
ample) it is assumed that common parents and scaling factors
are used for the three fundamental subbands. Of course, such a
restriction is performed at the expense of image fidelity. Histor-
ically, it was employed for purposes of data compression.

For FW decoding, the usual procedure is to start with a
wavelet coefficient tree that contains the stored wavelet coef-
ficients and zeros elsewhere. Iteration of the fractal-wavelet
scaling and copying procedure produces a “fixed point” wavelet
coefficient matrix that is an approximation to that of the original
image. The smaller the “collage distance” in (1), the better the
approximation [15].

Given a wavelet coefficient tree, let the range subtree
be represented by the vector and

the domain subtree be represented by the
vector . In practice, the norm is used
so that collage coding of the domain-range pair minimizes the
the error . In what follows, we shall regard
the wavelet transform of an image as a random signal so that
the wavelet coefficients and can be considered as random
samples drawn from the random variables and representing
the wavelet coefficient distributions of a parent subtree and its
corresponding child subtree , respectively. The optimal least-
squares scaling coefficient can then be written as

(2)

where

and (3)

Strictly speaking, the above expressions are approximations to
the statistical quantities of the random variables and since
they represent limited sample statistics. The fact that will not
be very large in our applications will contribute to errors in esti-
mating the local image statistics and, subsequently, suboptimal
fractal codes for the noiseless images.

B. Remarks

Recall that fractal-wavelet transforms exploit the local self-
similarities exhibited by wavelet coefficients across resolution

scales [15]. However, noisy structures have little or no resem-
blance across resolution levels. One would, therefore, expect
that the FW coding of a noisy image would result in some de-
noising. It was observed in [7] that this was, indeed, the case.
However, even though noise reduction has been performed, the
denoised image is clearly not an ideal estimate of the original
noiseless image. This is to be expected since the collage-based
FW coding was performed using noisy image data. As we have
shown for fractal coding in the pixel domain [9], one can go a
step further and predict the fractal-wavelet code of the original
image from these noisy observations.

C. Predicting the FW Code of the Noiseless Image

If we regard the wavelet transform of an image as a random
signal, then the fractal-wavelet coding process can be reduced
to the following mean-squared error (MSE) estimation problem:
For each uncoded child subtree , , find the
optimal parent subtree, , and its corresponding scaling coef-
ficient, , for which the MSE, given by

(4)

is minimized. This yields the MSE scaling coefficient estimate
of (2)

In practice, however, we must work with noisy images. In
what follows, random variables representing coefficients that
correspond to a noisy image will have hats, e.g., and . In the
case of an AWGN noise and when using an orthogonal wavelet
basis, the relationship between the subtrees of wavelet coeffi-
cients corresponding to the noisy and the noiseless images is as
follows:

(5)

Here, and are identically distributed AWGN pro-
cesses, , which are also assumed to be statistically in-
dependent. The independence can be achieved by ensuring that
the child and parent subtrees do not overlap. We also assume
that the image and the noise signals are independent, which is
reasonable and practical. In view of the above assumptions, it
can easily be shown that

(6)

It is important to note here that in [8, (14) ], the noise variance
term was incorrectly added to instead of subtracted from
the noisy second moment estimates. This may account for the
difficulties experienced by Barthel et al. [2] in obtaining any
gain in the denoising behaviour of the fractal coder.

In view of the above derivations, we make the following im-
portant observations.

• The above derivations allow us to estimate the statistics of
the original noiseless image (unknown in practice) from
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those of its noisy observation. When these estimates are ro-
bust, they can be used to estimate the FW code of the noise-
less image. As in the case of pixel-based fractal image de-
noising [9], we also estimate the squared collage errors
in the noiseless image in terms of the statistics of the noisy
observation. For a given child subtree, we select the parent
subtree for which the estimated error is minimized.

• The robustness of these statistical estimates is achieved
when the energy of the noisy parent and child subtrees are
sufficiently larger than the noise variance, that is

and (7)

for some parameter . It was observed that for various
test images, one obtains better results for values in the
range between 1.5 and 2.5. For our experimental results, it
was assumed that .

• When the robustness criteria in (7) is not satisfied, (6) may
yield negative second moment estimates and the predicted
scaling coefficient in (2) may be unbounded. Thus, in the
case of sparse signal information, our predictive method-
ology cannot be applied. In our previous work [8], we
simply encoded this type of noisy subtrees using the FW
scheme. No attempt was made to predict the FW code of
the corresponding noiseless subtrees. In [2], it was sug-
gested that reducing the scaling coefficient, in this case,
may be beneficial. For such predominantly noisy subtrees,
a reduction in the magnitude of the noisy scaling coeffi-
cient would suppress some of the noise. Here, we acknowl-
edge the above observation and employ a slightly modified
method to reduce the magnitude of the noisy scaling coef-
ficient as follows:

(8)

• Although the above algorithm was outlined for the purpose
of using the standard FW scheme, it is, indeed, a straight-
forward matter to generalize it to other FW schemes, such
as the quadtree-based FW scheme which uses a collage
error decomposition criterion [10]. It is recommended that
one use a FW that combines the three subbands in order
for the child and parent subtrees to have sufficiently large
size. Otherwise, poor estimates of the local statistics may
lead to poor results.

D. Enhancing the Fractal Denoised Estimates Using Cycle
Spinning

Similar to most wavelet-based methods, the FW denoised es-
timates generally exhibit some pseudo-Gibbs artifacts. Also, as
is the case for most block-based spatial methods, the denoised
estimates obtained by pixel-based fractal denoising schemes
tend to suffer from blockiness artifacts. Motivated by [3], we
examine the use of cycle spinning to reduce such disturbing
artifacts.

For the case of the predictive FW scheme, cycle spinning can
be incorporated as follows:

(9)

Here, the noisy image is first shifted using a diagonal
shifting operator . The DWT of the resulting image is then
computed and the fractal-wavelet (FW) denoising scheme is
then applied. The inverse DWT is then computed and the image
is unshifted. This process is repeated for each shift, ,

. The respective results are then averaged to obtain
one enhanced and denoised estimate with hopefully weaker
artifacts. Similarly, one may also incorporate cycle spinning
within the (pixel-based) predictive fractal denoising scheme of
[9]. The main difference is that there is no need to compute the
wavelet transform of the image.

E. Experimental Results

Table I illustrates the results obtained by two versions (fixed
and quadtree partitioning) of the predictive wavelet and pixel-
based fractal schemes as well as BayesShrink and OracleShrink
wavelet thresholding methods [4], before and after cycle spin-
ning, as applied to the Lena image. BayesShrink is a spatially
adaptive wavelet thresholding method based on context mod-
eling to adapt the threshold selection to changing image char-
acteristics, and OracleShrink is the optimal level-wise uniform
thresholding technique (in the MSE sense) when the original
noiseless image is assumed to be known [4]. Similar qualitative
results were obtained for a number of other test images.

Before incorporating cycle spinning, we note that the pro-
posed FW predictive scheme yields results that are comparable
to those obtained by the pure (in the pixel domain) fractal-based
denoising schemes as well as the standard wavelet thresholding
methods. In terms of PSNR, the quadtree-based FW predictive
scheme yields higher values than BayesShrink. For the quadtree-
based FW scheme, we have also found it beneficial to threshold
the stored wavelet coefficients that are located at the first few
decomposition levels. A neighborhood-based, level-dependent
thresholding strategy was applied, as proposed in [11]. A col-
lage error decomposition criterion for the quadtree-based FW
predictive scheme was also employed.

For a more equitable comparison between the fractal-wavelet
and the wavelet thresholding methods for image denoising,
we need to also assess and compare their respective com-
putational requirements. As detailed at the beginning of this
section, for the FW denoising scheme, each child subtree, ,

, is matched and compared with each potential
parent subtree, , . The noisless statistics in
(6) are then estimated. If these estimates are robust, as defined
in (7), the noiseless scaling coefficient and the collage error, as
given in (2) and (4), respectively, are then computed. When the
robustness condition in (7) fails, the scaling coefficient and the
collage error are computed from the noisy statistics, except for
an adjustment of the scaling coefficient, as given by (8). This
completes prediction of the FW code of the original image.
During the fast FW decoding process, the truncated wavelet
coefficients are extrapolated from the stored wavelet coeffi-
cients using the predicted FW code by scaling and copying of
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TABLE I
COMPARISON BETWEEN THE RESULTS OBTAINED BY THE VARIOUS IMAGE DENOISING METHODS BEFORE AND AFTER INCORPORATING

THE CYCLE SPINNING ALGORITHM WITH N = 16 SHIFTS, FOR THE NOISY LENA IMAGE WITH � = 25

the parent subtrees to lower child subtrees, as detailed in [5],
[6], and [12]. This summarizes the computational requirement
involved in the proposed FW denoising scheme.

In summary, the BayesShrink wavelet thresholding technique
[4], performs soft thresholding using an adaptive, subband
and decomposition level -dependent near optimal threshold
given by

if

otherwise
(10)

where and denote the original and noisy wavelet
coefficients located in subband, , and decomposition level,
, and is estimated by

(11)

Clearly, the computational complexity of BayesShrink is
lower than that of the predictive FW denoising scheme. Quan-
titatively, it was observed that BayesShrink executed in 14 s
while the FW denoising scheme required 63 s to execute, using
a Pentium 4, 1.9-GHz computer system platform. It should be
noted that the implemented computer programs were not nec-
essarily optimized to yield the fastest execution times. It should
also be noted that the fractal-wavelet transforms were originally
developed for the purpose of image coding and compression.
Thus, the FW denoising method may also be optimized to yield
simultaneous image compression and denoising, while wavelet
thresholding methods only aim for noise reduction.

After incorporating cycle spinning, we note that the per-
formance of the proposed fractal denoising methods slightly
surpasses that of two wavelet thresholding methods (especially
BayesShrink), at least as far as PSNR is concerned. It should

be mentioned that, in spite of the obvious advantages of cycle
spinning, clearly, this algorithm may be rather computationally
expensive. Indeed, when incorporating this algorithm with
shifts within any fractal or wavelet-based denoising method,
the computational complexity is multiplied by a factor of .

III. EXAMINING THE PERFORMANCE OF

THE FW CODE PREDICTION

We now examine how well the predicted FW code obtained
from the noisy test image of Lena, as corrupted by an AWGN
noise with noise intensity , compares with the exact
FW code of the original (noiseless) image of Lena, which is
assumed to be known for comparison purposes only.

Fig. 2(a) and (b) illustrates the distribution of the scaling co-
efficients, , corresponding to the original and noisy images
as well as the predicted scaling coefficients obtained using the
standard FW predictive scheme with . Note
that the bimodal distribution of the noisy image scaling coef-
ficients (with no zero scaling coefficients) differs significantly
distinct from that of the noiseless case. This difference can be
explained in the following way: In the FW coding of a noise-free
image, flat regions yield low energy subtrees with mostly zero or
near-zero coefficients. This results in zero or near-zero scaling
coefficients . In the presence of noise, however, these regions
can become dominated by the (higher frequency) noise. The en-
ergies of the corresponding wavelet subtrees are increased, re-
sulting in an increase of the magnitudes of the coefficients.

As illustrated in Fig. 2(c), the distribution of the predicted
scaling coefficients remains bimodal, although to a lesser degree
than for the noisy image case. This is because many flat subre-
gions of low activity yield child subtrees dominated by noise.
As explained above, these low-energy subtrees are simply frac-
tally coded and then their corresponding scaling coefficients are
reduced, as given in (8). Consequently, the distribution of the
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Fig. 2. Comparison between the scaling coefficients corresponding to (a) the original image, (b) the noisy image, and (c) the predicted coefficients.

Fig. 3. Histogram of the rank of the predicted parent subtrees corresponding to the noisy test image corrupted with AWGN noise with various intensities � =10,
25, 40. A rank of 1 means that the optimal parent subtree was predicted, the rank is 2 when the second best parent subtree was predicted, etc. For each child subtree,
a domain pool of 1024 parent subtrees was examined.

predicted scaling coefficients is now closer to that of the exact
scaling coefficients corresponding to the noiseless image.

For a large number of images, we have observed that for most
child subtrees, a good number of parent subtrees yield collage
errors that are quite close to the minimum collage error. This
is in accord with observations made in [1]. In general, there-
fore, one does not need to predict the optimal parent subtree
corresponding to each child subtree in order to obtain reason-
ably good suboptimal FW codes. Fig. 3 shows the histogram
distribution of the rank of the predicted parent subtrees for dif-
ferent values of the noise intensity . For the chosen FW reso-
lution, , all 4096 child subtrees were examined.
For each child subtree, all 1024 potential parent subtrees were
tested, and the predicted parent subtree was ranked with respect
to the collage distances of parent subtrees of the noiseless image.
For example, a rank of one means that the best parent tree was
selected by the prediction; a rank of ten means that there were
nine parent subtrees for which the collage error was lower. We
note that most of the predicted parent subtrees are among the
first few closest parent subtrees, especially for smaller noise in-
tensity. As expected, the histogram distribution spreads out as
the noise variance increases since it becomes more difficult to
estimate the noiseless collage errors from the noisy data since

the robustness criteria in (7) are less likely to hold in the pres-
ence of higher intensity noise. The fact that the predicted parent
subtrees are usually among the first few closest (i.e., near-op-
timal) parent subtrees, at least for low noise variance, accounts
for the good estimates of the noiseless image provided by the
predictive FW schemes.

Finally, we should mention that performing such a fractal
coding predictive scheme in the pixel domain yields similar re-
sults [7]. For low noise variance, the predicted parent subblocks
rank among the best subblocks. The histogram distributions of
the ranks are virtually identical in structure.

IV. PIXEL VERSUS WAVELET-BASED FRACTAL

PREDICTIVE SCHEMES: A COMPARISON

Table II illustrates the results of applying the pixel- and
wavelet-based fractal predictive schemes to denoise three dif-
ferent test images corrupted by an AWGN noise with different
noise intensities, . Note that the pixel-based fractal predic-
tive image denoising scheme performs consistently better than
the fractal-wavelet method, before and after the use of cycle
spinning. Possible explanations include the following.

• The pixel-based fractal predictive scheme employs a set of
contractive geometric maps that geometrically transform
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TABLE II
COMPARISON BETWEEN THE RESULTS OBTAINED BY THE PREDICTIVE FRACTAL (PIXEL-BASED) AND FRACTAL-WAVELET SCHEMES,

BEFORE AND AFTER APPLYING CYCLE SPINNING WITHK = 16 DIAGONAL SHIFTS, FOR A FEW TEST IMAGES

and decimate a parent pixel subblock so that the subimage
it supports can be deformed to match the image supported
on a child subblock. In fact, as discussed in [9], the decima-
tion associated with the contractive spatial maps is prob-
ably responsible for most of the denoising. However, the
fractal-wavelet scheme uses no such smoothing or prepro-
cessing step before fitting a parent subtree to a child sub-
tree. This may indeed be the main reason behind the dif-
ference in the performance of the two schemes.

• Another significant feature of the pixel-based fractal
denoising scheme is that it adopts a quantization strategy
of the gray-level coefficients that yields a fractally de-
noised estimate with pixel values that lie in the range

. As the noise variance increases, it becomes more
difficult for the FW predictive scheme, as well as other
conventional denoising methods, to yield denoised esti-
mates that satisfy this requirement.

• In the fractal-wavelet denoising scheme, a set of noisy
wavelet coefficients is stored at the top of the wavelet co-
efficient tree. These coefficients, along with the FW code,
are then used by the FW decoder to estimate the remaining
wavelet coefficients. As a result, the noise in the stored co-
efficients is redistributed among the predicted coefficients.
Although the stored wavelet coefficients are located in the
higher decomposition level (lower scale/resolution, top left
corner of the matrix in Fig. 1) which are smoothed by
the wavelet filters, the role of these coefficients in redis-
tributing the noise may be significant. In an effort to re-
duce this problem, we examined the use of a context-based
thresholding method [11] that was applied to some of the
stored wavelet coefficients. An improvement in results was
noted when the quadtree-based fractal-wavelet scheme was
used. However, the method was counterproductive in the

case of the standard FW scheme [fixed parent-child levels
].

V. SUMMARY AND CONCLUDING REMARKS

The aim of this work was to shed some further insight into
the fractal-based image denoising methods previously proposed
in [8], [9]. The essence of fractal-based denoising, both in the
wavelet as well as pixel domains, is to predict the fractal code
of a noiseless image from its noisy observation. We have ex-
perimentally shown that the fractal-wavelet denoising scheme
is able, at least for moderate noise variances, to locate near-op-
timal parent subtrees that lie among the best domain subtrees
in terms of collage distance. The procedure is assisted by the
high degree of local self-similarity of an image. In general, in
the pixel domain, a good number of domain subblocks approx-
imate a given range subblock very well. And the fractal-based
denoising method works well in finding one of these subblocks.
This is also reflected in the wavelet domain.

We have incorporated cycle spinning into these fractal-based
denoising methods to produce enhanced estimates of the de-
noised image. We have also found that pixel-based fractal de-
noising schemes consistently perform slightly better, in terms
of PSNR, than their wavelet-based counterparts (this does not,
however, imply that the visual quality of the images is higher).
Some possible explanations have been forwarded. However, the
significant computational savings of the wavelet-based fractal
denoising scheme may make it advantageous to use.

In [9], the pixel-based predictive fractal denoising scheme
was shown to be competitive with some of the standard
pixel-based image denoising schemes such as the Lee filter
[13]. In terms of PSNR, the wavelet-based predictive fractal
denoising schemes yield results that are competitive with the
efficient wavelet thresholding methods, such as BayesShrink
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and OracleShrink. This is particularly the case when using the
quadtree partitioning of the wavelet decomposition tree and
even without cycle spinning. Our FW denoising scheme is
computationally more expensive, roughly by a factor of four
when no cycle spinning is employed. However, we believe that
this factor could be reduced significantly with a more efficient
coding of the method. In conclusion, we hope that our work,
along with [8], [9], and [12], has shown that the scope of
applicability of fractal-based methods has been broadened.
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