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Chapter 1

Introduction

The aim of this paper is to present a unified treatment of the various fractal trans-
form methods for the representation and compression of computer images which
have been based, in some way, on the method of Iterated Function Systems (IFS).
These methods, which include “traditional” IFS and IFS with probabilities (IFSP),
Iterated Fuzzy Set Systems (IFZS), Iterated Function Systems with Maps (IFSM)
and variations, have been designed following a common pattern. Let

���������
de-

note a complete metric space, the “base space” which may represent the computer
screen, e.g. 	�
 �
����� 	�
 ������� with Euclidean metric. The IFS component, consisting
of � contraction maps, ����� �����

, will be written as � . An image or target is
then represented as a point in an appropriate complete metric space

�������! "�
. The

metric spaces used in the various IFS-type methods are listed below:

IFS [15, 2, 1]: # ���$� , the set of nonempty compact subsets of
�

.

IFZS [5]: %'& ���$� , the set of all functions ()� �*� 	�
 �
��� which are 1) upper
semicontinuous on

�����+�,�
and 2) normalized, i.e. for each (.-/%0& ���$�

there exists an 1324- � for which ( � 132 ��56�
.

IFSM [12, 13, 10]: 798 ������:;� , the space of < -integrable functions with respect
to a measure

:
,
�>= < =�?

. Fractal Transforms [4, 8, 9] are a special
case of IFSM. The Bath Fractal Transform [19, 20] is an IFSM with place-
dependent grey level maps.

IFSP [15, 2]: @ ���$�
, the set of probability measures on A ���$� , the B -algebra of

Borel subsets of
�

.

Along with the IFS maps � (except in the case of IFS on # ���C� ) there is an
associated set of functions D 5FE�G9HI�IG � �KJLJKJ��MGON4P , G �4�RQ � Q , which satisfy
conditions that depend on the particular metric space

���S�+�! T�
being used. The
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2 CHAPTER 1. INTRODUCTION

pair of vectors
� � � D � then determine a fractal transform operator

�
which is

designed to map
�

into itself. It is desirable that
�

be contractive on
�������  �

so
that it possesses a unique and globally attracting fixed point �� - � , i.e.

� �� 5 �� .

Given a (�- � , its image
� ( will be constructed for each point 1 - � (or each

subset � -0# ���C� ). Except in the case of IFSP (which is no longer considered for
image representation), most practical as well as theoretical studies devise methods
which either assume that the ��� ���$� do not overlap, or at least ignore any such
overlap. (Indeed, if

� � ( �I� 1 � is to exist for all 1 - � and
�

is closed and not
discrete or finite, then some sets � � ���$� must overlap with each other, if only at
one point.) As a result, each point 1 - � is considered to have only one preimage
���

H
���	��
 � 1 � - � . The value of the fractal transform of ( at 1 - � � ���C� is simply� � ( �I� 1 �S5 G � � ( � ���

H
� � 1 � ��� .

In the spirit of our earlier work on IFS-type methods on function spaces,
namely IFZS and IFSM, we consider the more general non-overlapping case when
1 has more than one preimage, i.e. � �

H
���
 � 1 �M�������'=���� 1 � . There is then the ques-

tion of how to combine the
��� 1 � fractal components

G ���
 � ( � ���
H

���
 � 1 � ��� , to form our
generalized fractal transform

� � ( �I� 1 � . In this paper, we postulate a set of com-
mon rules for combining fractal components. Some of these rules were already
considered in the development of IFZS [5]. Understandably, such a method of
generalized fractal transforms may not necessarily be useful in the problem of
fractal image compression since the coding of any region of an image with more
than one fractal component is usually viewed as redundant and contrary to the goal
of data compression. Our study, however, is based on a view of fractal transform
methods as viable methods of approximating functions and measures in the same
spirit as Fourier series/transforms, orthogonal function expansions and, more re-
cently, wavelet expansions.

Previously [12], we compared briefly the various IFS-type methods before
outlining a solution of the inverse problem for IFSM [13]. In this paper, we again
consider all of these methods, but with the purpose of unifying them under one
common scheme. The first step is to establish the IFS method, traditionally viewed
as a method of geometrically constructing fractal-type sets in # ���$� , as a fractal
transform method over an appropriate function space whose elements are bitmap,
i.e. black and white, images. A method of representing images with varying grey
levels is clearly desirable. There is a straightforward transition from this IFS ap-
proach to the method of IFZS which works with the grey level range [0,1]. In
the overlapping case for IFZS, the prescription for combining several fractal com-
ponents, namely the supremum operator, carries over from the IFS method. A
modification of the IFZS method [10], motivated in part by restrictions associ-
ated with the Hausdorff metric, yields the method of IFSM on the function space
7
H ���$�

. It is then natural to consider IFSM on 7 8 ���$� .
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The final step is to provide a link between the IFS, IFZS and IFSM methods on
function spaces and the method of IFSP on the probability measure space @ ���$�

.
This is accomplished by constructing an IFS-type fractal fransform on the space
of distributions

��� ���$�
. IFSP and IFSM correspond to particular cases of this dis-

tributional IFS (IFSD). Another noteworthy result of this method is an expression
for integrals of the form ����� � 1 � �( � 1 � � 1 , where �( denotes the fixed point of an
IFSM. (This is analogous to the expression for integrals of functions with respect
to an IFSP invariant measure.)

Finally, we mention that the theory described in this paper may be easily ex-
tended to the “block encoding” [17] or “Local IFS” methods [4] which are cur-
rently employed in fractal image compression. In these methods, the IFS maps
are assumed to map subsets of

�
, the domain or parent blocks, to smaller sub-

sets, the range or child blocks. In a followup paper presented at this conference
(henceforth referred to as Paper II), we consider inverse problems for generalized
fractal transforms.
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Chapter 2

Generalized Fractal
Transforms

In this section, we formally define generalized fractal transforms of image func-
tions and provide a set of common rules for constructing such transforms from
their fractal components. The mathematical setting is provided by the following
ingredients:

1. The base space: denoted, as above, by
�������,�

. The space representing the
pixels; a compact subset of Q � . Without loss of generality,

� 5 	 
 ���M� �
with Euclidean metric.

2. The IFS component: For an � - � , let � 5 E � HI� � � �KJLJKJ � � N P . In
many cases we can relax the condition that the � � be contraction maps on�

. Note that different sets � � ���$� may overlap. The principal classes of
IFS functions used are:
��� �����$� 5 E � � � � ��� � � � � 1 �M� � � � ���4=��I� � 1 � � � for some

� - 	�
 �
�L� ,	 1 � � - �>P , the set of contraction maps on
�

.
��� �9HL���$��
 ��� �����C�

: the set of one-to-one contraction maps on
�

.
� � � H ���$� : the set of affine maps on

�
which are one-to-one. The repre-

sentation of such maps in
� 5 	�
 �
��� � is given by


 5�������� � (2.1)

where A is an
��� �

matrix with nonzero determinant and b is an
�

-vector.
The Jacobian of this transformation will be denoted by

� ���
5�� �RH�� � JKJKJ�� � � ,
where the

� � are the eigenvalues of
�

.

5



6 CHAPTER 2. GENERALIZED FRACTAL TRANSFORMS

3. The image function space: % ���$��5)E (�� ��� ����� Q�� P , the functions
which will represent our images. The grey level range

���
will denote

the range of a particular class of image functions used in a given fractal
transform method. (In practical applications,

���
is bounded.)

4. The grey level component: Associated with the IFS maps � will be a
vector of � functions D 56E
GRHI�IG � �KJLJKJ��MGON P , G �9� � � � � �

. We may also
consider

G ��� � � � � � � �
, i.e. “place-dependent” grey level maps. See,

for example, Ref. [20, 19, 10].

5. The fractal components of ( will be given by �
�"� ��� � � � � =��"= � ,
where

�K� � 1 ��5
	 G � � ( � ���
H

� � 1 � ����� 1 - �T� ���$���

 � 1��- �T� ���$��J (2.2)

In other words, the fractal component � � � 1 � represents a modified value of
the grey level of ( at the

�
th preimage of 1 (if it exists).

6. The generalized fractal transform of ( - % ���C� : 
�� � 	 � � � � � � �
,� =�� = � , where


 � �����95 
 � ��� H ��� � �KJKJLJ���� � ����� � - ��� � � =��S= �OJ (2.3)

The 
 � combine the
�

distinct fractal components
� � 5 � � � 1 � subject to

conditions described below. The transform 
 N defines an operator
� �

% ���C� � % ���$� that associates to each image function ( - % ���$� the
image function � 5 � ( . The way in which the 
 � combine the fractal
components depends on the image function space used.

The grey level ranges and fractal transforms for IFZS and IFSM are given below.

IFZS:
��� 5 	�
 �
��� . 
 N � 1 ��5������ H! �  ON E � H � 1 �M� � � � 1 �M�LJKJKJ+� � N � 1 �MP .

IFSM:
� � 5 Q�� . 
 N � 1 ��5#" N�%$ H �K� � 1 � .

We now outline the properties which are to be satisfied by the fractal transform
operators 
 � . This discussion follows the same pattern discussed in [5] with some
additional comments.

1. 
 N ���IHK��� � �LJKJLJ���� N � 5 
 N ��� �'& ��� �%( �LJKJLJ���� �*) � , where
E+��HL�!� � �LJKJKJ+�!� N P is any

permutation of the index set
E �
�-, �KJKJLJ�� � P (symmetry).

2. 
 N ���IHK��� � �LJKJLJ���� N ��5 
 � � 
 N � H��%�IHL�KJKJLJ���� N � H+����� N � (recursivity).
Properties 1 and 2 imply that


 N ���IHK��� � �LJKJLJ���� N ��5 
 � � 
 � � 
 � � JLJKJ 
 � ���IHK��� � �M����.K������/��M�LJKJLJ���� N ��� (2.4)
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and, in particular, that 
 � � 
 � ��� H ��� � �M��� . �T5 
 � ��� H � 
 � �%� � ��� . � � . Thus, 
 � is
an associative binary operation on Q � � Q�� . We shall let � denote such a
binary operation and assume that it satisfies the following set of additional
properties:

3. � �3	 ��� ���"� ���
is continuous.

4. � � 
 � � �45 � � 	 � - ��� , i.e. 0 is an identity element; the combination of a
pixel with brightness � � 
 with one of zero brightness yields a pixel with
brightness � .

5. � is nondecreasing, i.e. 1�� � 1�� implies that � � 1�� � � �4= � � 1�� � � ��� 	 � -� �
. The brighter a pixel, the brighter its combination with another pixel.

6. � � 1 � 1 ��� 1 � 	 1$- ��� ; the combination of two pixels of equal brightness
should not result in a darker pixel.

7. For all � - ��� , � �	�
� � �45
�
for

� 5 ������� - ��� (
�

may be infinite), i.e.
�

is the annihilator.

There is a representation theorem for topological semigroups on Q which will
be useful for the construction of appropriate associative operators for our fractal
transforms.

Theorem 1 [18] If � � 	 Q � ���>� Q�� satisfies Properties (1)-(7) above, then
there exist:

1. a discrete (finite or countably infinite) index set 
 ,
2. a sequence of disjoint open intervals

E ��� � ��� � ��P�
 Q � ,
� -�
 , with 
 5� H ��� H =�� � ��� � = JLJKJ

,

3. a sequence of numbers
� ��-$Q�� ,

� -�
 and

4. a sequence of continuous and strictly increasing functions � � � 	 � � ��� � � �
	 
 ��� � � , � -�
 , with � � ��� � ��5 
 and � � ��� � �95�� � , such that

� � 1 � � � 5�� � � � � � 1 � � � � � � ����� 	 � 1 � � � - 	 � � ��� � � � � (2.5)

where
� �9�3	�
 �I? �3� 	�
 ��� � � , the pseudoinverse of ��� is defined as

� � � 1 �R5 	 � �
H

� � 1 �M� 1 - 	�
 ��� � � �� � � 1 �- 	 � � �I? ��� (2.6)

and finally,

� � 1 � � � 5���� �;� 1 � � ��� � � 1 � � � - 	 �Q � � ������� "! 	 � � ��� � �
� J

(2.7)
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Examples:

1. With the condition that � � 1 � 1 �95 1 for all 1 - � � 5 	�
 ����� 
 Q�� , we have

� � 1 � � �"5������ E 1 � � P 	 � 1 � � � - 	�
 ���M� � J (2.8)

This represents an extreme case where the index set 
 5 E �
P
and the se-

quence
E ��� � ��� � ��P reduces to the interval

� 
 ���L� . Then all 1/-�	�
 ���M� are
idempotents of � , with 0 being the identity and

�
the annihilator. This was

the natural choice for the IFZS case [5].

2. � � 1 � 1 � 5 1 for only 1 5 
 or 1 5 �
. Again, there is only one interval� �O��� �R5 � 
 ���K� . If we choose � � 1 �"5 1 , then

� � 1 � � �"5 ����� E 1 � � ���
P 	 � 1 � � � - 	 
 ���M� � J (2.9)

3.
� � 5 Q � , i.e.

� 5�?
. A possible binary operation is the summation

operator, i.e.
� � 1 � � �"5 1 � � 	 � 1 � � � - 	�
 �M? � � J (2.10)

The binary operation in Eq. (2.10) is employed by the IFSM method [12,
13, 10].



Chapter 3

From IFS to IFSM Fractal
Transforms

In this section, we construct a scheme to unify existing IFS-type fractal transforms
on function spaces, as outlined in the Introduction. At the end we review the basic
properties of IFSP on the space of probability measures @ ���$�

, in preparation
for Section 4, where fractal transforms of functions and IFSP are related through
distributions. In what follows, we define the contraction factor of a map � -��� �����C�

to be � � 5 �����
� � �  � � ���$ � � � � � 1 ��� � � � � � � � � 1 � � ��J (3.1)

For an � -map IFS � 5/� � H � � � �KJLJKJ�� � N � , the contraction factors of the � � will
be denoted by

� � . We then define
�T5 ����� H! �  3N E � � P .

3.1 IFS

Here
�.5 # ���$� , the set of nonempty compact subsets of

�
and

�! 
is the Haus-

dorff metric � , defined as follows. Let the distance between a point 1�- � and a
set � - # ���$� be given by � � 1 � � �95 ����	


  ��
� � 1 � � �MJ (3.2)

Then for each � HK� � � -0# ���C� ,
�
� � H � � � �95 �
��� E �����

�  �� & � � 1 � � � ������� �
  �� ( � ���,� � H �MP J (3.3)

Now let � 5 E � HI� � � �KJ J J � � N P , �T� - ��� �����$� . Associated with each contrac-
tion map �T� is a set-valued mapping ���� �O# ���$� � # ���$� defined by ���� � � � 5

9
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E � � � 1 � � 1 -�� P for �)- # ���C� . Then the usual IFS operator �� associated with
the � -map IFS w is defined as follows:

�� � � �"5
N
�
�%$ H �� � � � �M� � - # ���$�MJ (3.4)

The IFS operator �� is contractive on
� # ���$��� � � [15]:

�
�
�� � � ��� �� � � �T=�� � � � � � ��� 	 � � � - # ���$�MJ (3.5)

The completeness of
� # ���$��� � � guarantees the existence of a unique fixed point

�� 5 � - # ���$� . The set
�

, also called the attractor, is the IFS representation of
an image. From Eq. (3.4), it satisfies the following self-tiling property,

� 5
N
�
�%$ H ��T� � � ��J (3.6)

We now formulate the IFS method over an appropriate function space. First, let
�T� - � � � H ���$��� ��� �9H
���$� , � = � = � . Let 
 � � 1 � denote the characteristic
function of a set � -�# ���$� , i.e.


 � � 1 ��5
	 
 � 1 - � ��
� 1��- � J (3.7)

Now let
� � � - # ���$� and

� 5 ��� � - # ���$� . It follows that


�� � 1 ��5���� � E 
�� � 1 �M� 
�	 � 1 ��P J (3.8)

From the property that 
�
��
 � � 
 � 1 ��5 
 � � ���
H

� � 1 ��� , we then have, from Eq. (3.8),


�
� � � 
 � 1 �95 �����H  �  3N E 
 � � � �
H

� � 1 ����P J (3.9)

Now consider the function space %0&	�� ���C� (for “black and white”) defined by

% &	�� ���$�"5 E (�� � � E 
 �
�
P � � ( < < � ( � - # ���$��P J (3.10)

In this case, the support of ( - %0&	�� ���$� is given by

� ( < < � ( � 5 E 1 - � � ( � 1 ��56� P
5 � 	 ( �

H �
(3.11)

where we have introduced the IFZS notation 	 ( �
H

to denote the “1-level” set of ( .
In other words, ( represents a bitmap (black and white) image whose white region
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	 ( �
H

is nonempty and closed. In fact, % &	 � ���C� 
 %'& ���$� , the latter being the
complete metric space on which IFZS is formulated. It is thus natural to consider
the following metric on %0&	 � ���$� :

�
	 �

� ( � � ��5 �
� 	 ( �

H � 	 � � H �M� 	 ( � � - % &	�� J (3.12)

Completeness of
� % &	�� ���$����� 	 � � follows from the completeness of

� # ���$�M� � � .
From Eq. (3.9), the fractal transform operator

� � %0&	 � ���$��� %'&	 � ���$� associ-
ated with the � -map IFS w is given by

� � ( �I� 1 �S5 �����H! �  ON E ( � � �
H

� � 1 ����P � 	 1C- ��J (3.13)

The contractivity of
�

on
� % &	 � ���$����� 	 � � follows immediately from the con-

tractivity of the IFS operator �� on
� # ���C�M� � � . Thus there exists a unique fixed

point �( - %'&	 � ���C� of the operator
�

, i.e.
� �( 5 �( . Moreover, 	��( �

H 5 �
, the

attractor of the IFS w so that

	��( �
H 5

N
�
�%$ H �� � � 	��( �

H ��J
(3.14)

In this formulation, pixels can assume only two grey level values, namely 0 and
1, or black and white (or vice versa). As such, only the geometry of an attractor
is revealed. “Real” images, however, are not only black and white. Instead, their
pixels can assume a range of nonnegative grey level values, e.g. ( � 1 � - 	�
 ���M� .
For this reason, it would be desirable to modify the above IFS method so that such
a range of grey level values could be produced. This is easily accomplished by
modifying the fractal components in Eq. (3.13) as follows:

� � ( �I� 1 �95 �����H! �  3N E�G � � ( � ���
H

� � 1 ��� ��P � 	 1 - ��J (3.15)

where the
G �"�;	�
 �
��� � 	�
 �
��� are grey level maps. Subject to some conditions on

these maps (which guarantee that
� �;%0& ���$� � %'& ���$� ) we then arrive at the

method of Iterated Fuzzy Set Systems (IFZS) [5].

3.2 IFZS

Here, images are represented by functions (>- %0& ���$� (cf. Section 1). The grey
level range is

� � 5 	�
 �
��� . The metric
�� 

for the space
�.5 %'& ���$� is defined as

follows. We first define the � -level sets of (�-�%0& ���$� for � - 	�
 �
��� as follows:

	 ( ��� � 5 E 1 - � � ( � 1 ��� �
P �

� - � 
 ���M��� (3.16)

	 ( � 2 � 5 E 1 - � � ( � 1 � � 
 P
�
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where �� denotes the closure of the set � in
�������,�

. Clearly, 	 ( � � - # ���$� for

 = �

= �
. Then for ( � � -�%'& ���$� , define

�
�
� ( � � ��5 �����

2  �
 ;H � � 	 ( � � � 	 � � � �MJ (3.17)

The metric space
� % & ���C�M�+� � � is complete [6].

The IFZS is defined by the following:

1. The IFS component: � 56E � HI�KJKJLJ�� � N P , �T�9- ��� �����C� , � = ��= � ,

2. The grey level component: D 5�E
G H �MG � �KJ J J �IG N P , G � �4	 
 ���M��� 	�
 �
��� ,
such that for all

� - E �
�-, �KJLJKJ�� � P :
(
�
)
G � is nondecreasing on [0,1],

(
�'�

)
G � is right continuous on [0,1),

(
�'� �

)
G � � 
 ��5 
 .

In addition,

(
� � ) G � � � �L�95 �

for at least one
� & - E �
�-, �KJ J J � � P .

The IFZS fractal transform
� � %0& ���$� � %'& ���$� is defined as

� � ( � � 1 ��5 �����H! �  ON E
G � ���( � � �
H

� � 1 � ��P � 	 1 - ��� (3.18)

where, for
� � �

, (i)
�( � � � 5 ��� � 
  	 E ( ��� �MP if

���5��
and (ii)

�( ��� � 5 
 . The
conditions imposed on the functions

G � guarantee that
�

maps
� % & ���C�M�+� � � to

itself. The relation between level sets of a function ( and those of its image
� ( is

given by

	 � ( � � 5
N
�
�*$ H ��T� � 	 G �	�"( � � �M� � - 	�
 �
����J (3.19)

The contractivity of the IFS maps � � implies that that
�

is a contraction map on� %'& ���$����� � � since [5]

�
�
� � ( � � � � = �I� � � ( � � �M� 	 ( � �'- % & ���$��J (3.20)

The completeness of this space guarantees the existence of a unique fixed point
�( - %'& ���C� of the operator

�
. From Eq. (3.19), the � -level sets of �( obey the

following generalized self-tiling property:

	��( � � 5
N
�
�*$ H �T� � 	 G �
� �( � � ��� � - 	�
 �
����� (3.21)
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which can be compared to the self tiling of �
5 �

level sets for the IFS case in Eq.
(3.14).

We draw the reader’s attention to the fact that the use of the sup operator in the
IFZS operator

�
is a natural choice. The IFZS method is based on the properties

of level sets of functions in %0& ���$� . Taking the sup of two functions ( � 1 � and� � 1 � for all 1 - � corresponds to taking the union of their respective � -level sets.
The Hausdorff metric

�
� is very restrictive, however, from both practical (i.e.

image processing) as well as theoretical perspectives. In [10], two fundamental
modifications were made to the IFZS approach:

1. For a
: -�@ ���$�

and ( � �'-�%'& ���$� , define
	
� - 	�
 ���M� ,� � ( � ��� � � 5 :�� 	 ( � ��� 	 � � � �

5 �
�
� 
�� �
	�� � 1 � � 
�� 
�	�� � 1 � � � :�� 1 ��� (3.22)

where
�

denotes the symmetric difference operator: For
� � � � �

,
� � � 5

� ��� � � � � � � � �
.

2. Now let � be a finite measure on A � ��� � and define

� � ( � ����� �;5������ � � ( � ��� � � � � � � �MJ (3.23)

An application of Fubini’s Theorem yields

� � ( � ����� � 5 � � E 
 P
��:�� 	 ( � 2 � 	 � � 2 � ���
��� � ��� � � 1 �M� ( � 1 � ��� � :�� 1 �

� �
��� � � � ( � 1 �M� � � 1 � ����� :�� 1 �M� (3.24)

where
� � 5)E 1 - � � ( � 1 � � � � 1 �MP and

� 
 56E 1 - � � � � 1 � � ( � 1 �MP .
It can be shown that

� � ( � ����� � is a pseudometric on 7
H �����+:;�

. In the particular
case that � 5��

, the Lebesgue measure on the grey level range
� �

, Eq. (34)
becomes � � ( � ��� ����5��

�
� ( � 1 � � � � 1 � � � :�� 1 ��� (3.25)

the 7
H �����+:;�

distance between ( and � . The restrictive Hausdorff metric
�
� over

� -level sets has been replaced by a weaker pseudometric (metric on the measure
algebra) involving integrations over

�
and

� �
. The result is a fractal transform

method on the function space 7
H �����+:;�

. While it appears that only the 7
H

distance
can be generated by a measure � on A � � � � , it is still natural to consider fractal
transforms over the general function spaces 7 8 ������:;� .
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3.3 IFSM

Let
:

be a measure on A ���$� and for any integer < � �
, let 7 8 ������:;� denote the

linear space of all real–valued functions ( such that ( 8 is integrable on
� A ���$����:;� .

We choose
� 5 7 8 �����+:;� . The metric

�  
is defined by the usual 7 8 –norm, i.e.�  � ( � � � � 5 � 8 � ( � � � , where

�
8
� ( � � �R5�� ( � � � 8 5�� �

�
� ( � 1 � � � � 1 � � 8 � :�� 1 ���

H��
8 J

(3.26)

The IFSM is then defined by the following:

1. The IFS component: � 56E � H �KJKJLJ�� � N P , � � - � � � H ���$� , �4= �9= � ,

2. The grey level component: D 5 E�G H �IG � �LJ J J �MG N P , G � -	� � < � Q �MQ � , where

� � < � Q �IQ � 5 E�G � Q � Q � � G9��� H � � G9��� � � � =�
 � � H � � � � �
	 �IHI��� � -$Q for some


 - 	�
 �I? ��P J (3.27)

Since our function space involves integrations, it is natural to define the following
fractal transform operator

�
corresponding to an � -map IFSM

� � � D � :
� � ( � � 1 � � 5

N�
� $ H � � � 1 ��� (3.28)

where the fractal components � � are defined in Eq. (2.2). The above conditions
on the ��� and

G � guarantee that
� � 7 8 ������� � � 7 8 ������� � for all < - 	 �
�I? � ,

where
�

denotes Lebesgue measure on
�

.
Now let

� 5 	�
 �
����
 ,
:C5 �

and
�4= < = ? . Also let ( � � -�7 8 ������� � with

fractal components � � and
� � , � = � = � , respectively. Then from the relation

� � ( � � � � 8 5 � N�
� $ H 	 �+� � 1 �

� � � � 1 � ��� 8
=

N�
� $ H � � � � 1 �

� � � � 1 ��� 8 � (3.29)

we obtain the result

�
8
� � ( � � � �S= � 8 � 8 � ( � � ��� �

8
5

N�
� $ H � � � �

H��
8 
 � � (3.30)

where
� � � � is the Jacobian associated with the affine transformation 1 5 ��� � � � .

In the special
:

-nonoverlapping case, i.e. where the sets � � ���$� overlap only on
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sets of zero
:

-measure (the standard assumption in practical applications in the
literature), we may use the relation

� � ( � � � � 88 5
N�
� $ H � �+� � 1 �

� � � � 1 ��� 88 (3.31)

to obtain the result

�
8
� � ( � � � �"= �� 8

�
8
� ( � � ��� �� 8

5 � N�
� $ H � � � � 
 8���

H��
8 J

(3.32)

Note that
�� 8
= �

8
= 
$� 
�5 �����H  �  ON 
 � J (3.33)

In the nonoverlapping case, with < 5 ? , we also have� � ( � � � � � = 
 � ( � � � � � 	 ( � � -�7 � ����� ����J (3.34)

This is the usual bound presented in the literature on fractal transforms [4, 9].
In applications, we shall be using affine IFSM, i.e. � � - � � � H ���C� and

G � ���+��5 � � � ��� � � � -CQ ��� = � = � J (3.35)

If the associated operator
�

is contractive on 7 8 ������:;� , then its fixed point �(
satisfies the equation

�( � 1 ��5
N�
� $ H 	 � ����� � 1 � ��� ��� � � 1 � ��� (3.36)

where � � � 1 �$5 �( � ���
H� �I� 1 � and � � � 1 �$5 
 � 
 � � 
 . In other words, �( may be

written as a linear combination of both functions � � � 1 � and piecewise constant
functions � � � 1 � which are obtained by dilatations and translations of �( and 
 � � 1 � ,
respectively. This is somewhat reminiscent of the role of scaling functions in
wavelet theory.

The following result guarantees that the use of affine IFSM is sufficient from
a theoretical perspective.

Theorem 2 Let
� 5 	�
 �
��� 
 and

: - @ ���C�
. For a < � �

define 7 8 � ������:;��
7 8 �����+:;� to be the set of fixed points �( of all contractive � -map affine IFSM� � � D � for � �6�
. Then 7 8 � �����+:;� is dense in

� 7 8 ������:;����� 8
�
.

The proof of this theorem is based on the property that the set of all step functions
in
�

is dense in
� 7 8 ������:;����� 8

�
.
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3.3.1 “Place-Dependent” IFSM

The above IFSM method may be easily generalized to “place-dependent” IFSM
(PDIFSM), that is, IFSM with grey level maps having the form

G � � Q �4� � Q ,� = � = � . In other words, the
G � are dependent both on the grey-level value at a

preimage as well as the location of the preimage itself. (This is analogous to IFS
with place-dependent probabilities [3].) Much of the theory developed above for
IFSM easily extends to place-dependent IFSM as we outline below. This is the
basis of the “Bath Fractal Transform” and its effectiveness in coding images has
been discussed in the literature [19, 20, 24].

The fractal components � � � 1 � of a function ($-�7 8 ������:;� will be given by

� � � 1 �R5 	 G � � ( � � � H� � 1 � ��� � �
H� � 1 � �M� 1 -�� � ���$�M�
 � 1��-�� � ���$�MJ (3.37)

The operator
�

associated with an � -map PDIFSM
� � � D � will have the form

� � ( �I� 1 �95
N�
� $ H � G � � ( � � �

H� � 1 � �M� � �
H� � 1 ����� (3.38)

We first define the following set of uniformly Lipschitz functions,

� � < � Q ��� �IQ � 5 E�G � Q ��� � Q � � G9�%�IHI���K� � G9��� � ���K� � = 
 � �IH � � � � �
	 � H ��� � - Q � 	 � - � for some


 - 	�
 �M? ��P J (3.39)

If �T�S- � � � H ���$� and
G �9- � � < � Q ��� �IQ � for

� =��S= � then
� � 7 8 ������� ���

7 8 ����� ��� for
� = < � ? . Furthermore, if

� 
 Q 
 ,
� - E � � ,��LJ J J P , and

:$5��
then the relation in Eq. (3.30) holds.

Some possible forms for the place-dependent grey level maps
G

are as follows:

1.
G9�%�I���K�95 " ��*$ 2 � � �	�L� � � , where the

� � � � � Q , bounded on
�

,

2.
G9�%�I���K�95 � ���+� � � �	�L� (“separable”) with suitable conditions on � and

�
, e.g.

��-	� � < � Q �MQ � and
� � � � Q bounded on

�
.

It is convenient to work with
G

maps which are only first degree in the grey-level
variable

�
, i.e.G9���I���L� 5

�
� � � � � �	�L�M� � � � � Q � bounded on

���
(3.40)G9���I���L� 5

�
���K�'� � �T���K���

�
� � � � � Q � bounded on

��J
(3.41)

The action of the first set of maps can be considered as a “place-dependent” shift
in grey-level value. The second set of maps produce a more direct interaction
between position and grey-level value. In Figure 3.1 are presented histogram ap-
proximations of fixed points �( of two rather simple affine PDIFSM in order to
show the effects of place-dependence.
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Figure 3.1: Fixed-point attractor functions �( � 1 � of the following
,
-map PDIFSM:

� HL� 1 ��5
H
� 1 , � � � 1 ��5

H
� 1 �

H
� ,
G HL�%�I���K��5 H

� � � H� , G � ���I���L��5 H
� � � H� � � � . When

� 5 
 , �( � 1 ��5.�
(a.e.). (a) � 5 H

� . (b) � 5 � H� .
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3.4 IFSP

Associated with an � -map IFS w, � �4- ��� �����$� , is a set of probabilities �
5

E < HI� < � �KJ J J � < N P , <!� � 
 , with
" N�%$ H < H 5 �

. Let A ���$� denote the B -algebra of
Borel subsets of

�
generated by all the elements of # ���$� . Then

�.5 @ ���$�
, the

set of all probability measures on A ���$� . Here, the (Markov) operator associated
with the IFSP

� � � � � is defined as follows: For a
: -$@ ���$�

and each � -0# ���$� ,
� � :;� � � � 5 ��� :;� � � ��5

N�
�*$ H <,� :�� ���

H
� � � ����J (3.42)

The metric
�  

on
�.5 @ ���$�

is the so-called Hutchinson metric
��� ��:9� � � :

��� ��:9� � �95 ��� �
�  ��!� 8 & � �
	 � 


� �
� �

� : � �
� �

� � � � 	 :9� �'-�@ ���$�M�
(3.43)

where

� � < H ��� �MQ �*5 E ��� � � Q � � � � 1 H � � � � 1 � � � = � � 1 H � 1 � �M� (3.44)
	 1 HI� 1 � - � P J

The contractivity of the IFS maps � � implies the contractivityof
�

on
� @ ���C�M�+���4�

[15]: ��� ��� :9��� � � = �I��� ��:9� � �M� 	 :9� � - @ ���C�MJ
(3.45)

There exists a unique �: -0# ���$� such that (1)
� �:�5 �: and (2)

�
�'��� � :9� �:;�R� 

as
� � ?

. Moreover,
� ( < < � �:;� � � , with the equality when all <O� � 
 . From

Eq. (3.42) it follows that

�:�� � �"5
N�
�*$ H <!� �:�� � �

H
� � � � �M� 	 � - # ���$�M� (3.46)

which leads to the following “change of variables” result for integration: For �C-� ���C�
(or simple functions),

�
� �

� 1 ��� �:�� 1 ��5
N�
�*$ H � � � � �"�T� �I� 1 � � �:R� 1 �MJ (3.47)

It is well known that by setting � � 1 ��5 1 � , � 5 �
�-, �KJLJKJ
, one can obtain recursion

relations for the moments �� � 5 � � 1 � � �: of the invariant measure.
If we use the notation

� � �+: � � 5 �
� �

� 1 ��� :�� 1 �M� ��- � ���C�M�$: - @ ���C�M�
(3.48)



3.4. IFSP 19

then � � � � : � 5�� � � � ��: � � (3.49)

where the adjoint operator
� � � � ���$�T� � ���$�

(referred to as
�

in [2]) is given
by

� � � � �I� 1 �"5
N�
�*$ H <,� � � �"�T� �I� 1 ��J (3.50)

We may iterate this procedure to obtain, for
�C5 �
�-, �KJKJLJ

,

� � � � � : � 5 � � � � � � � ��: �
5

N�
� & ������� � ��� < � &

JKJKJ < ��� � � � � �"� � & � JLJKJ �"� ��� �I� 1 ��� :9J (3.51)

For an 1!24- � , let
: 5�� ��� , a Dirac unit mass at 132 . Since

� � � ��� :9� �: ��� 
 , one
obtains�

� �
� 1 ��� �:�� 1 ��5
	 ���

��� �

N�
�'& ������� � � � <,�'&

JLJKJ <!� � � � �"�T�'& � JLJKJ �"�T� � � � 1 2 �MJ (3.52)

This formula has been used to provide estimates for integrals involving �: which
cannot be solved recursively. The computation of the multiple sums involve the
enumeration of an � -tree to

�
generations.

By setting � � 1 � 5 
 � � 1 � , where � � � , the above relation becomes

�:�� � �"5
	 ���
��� �

N�
� & ������� � � � <,�'&

JKJLJ <,� � 
 � � �T�'& � JKJKJ �"�T� � � 1 2 ����J (3.53)

The term involving 
 � indicates whether or not the point � � & � JLJKJ �T� ��� � 1!2 � lies
in � . The quantity < � &�< � ( JLJKJ < ��� represents the probability of choosing the finite
sequence

E B � & � B � ( �KJKJLJ�� B ��� P . Therefore for each
� � 
 , the sum is equal to the

probability that the point 1 � lies in � .
There is a connection between Eq. (3.53) and the Random Iteration Algorithm

or “Chaos Game” [1], defined as follows: Pick an 1 2 - � and define the iteration
sequence

1 � � H 5 ��� � � 1 � ��� �C5 
 �
�
�-, �KJKJIJ�� (3.54)

where the B � are chosen randomly and independently from the set
E � � ,��LJKJKJ � � P

with probabilities �
� B � 5 � � 5 <,� . A straightforward coding argument shows

that for almost every code sequence B 5 E B HI� B � �LJKJLJ � the orbit 1 � is dense on
the attractor

�
of the IFS � . As such, the Chaos Game can be used to generate

computer approximations of
�

. However, it also provides approximations to the
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invariant measure �: as a consequence of the following ergodic theorem for IFS
[7]: For almost all code sequences B 5.� B H � B � �KJLJKJ � ,

	 � �
��� �

�
� � �

��
� $ 2 � � 1 � ��5

�
� �

� 1 � �: � 1 � (3.55)

for all continuous (and simple) functions �>� ��� Q . By setting � � 1 � 5 
�� � 1 �
in Eq. (3.55) for an � � � , we obtain

�:�� � �S5 	 ���
��� �

�
� � �

��
� $ 2 
 � � 1 � ��J (3.56)

In other words, �:�� � � is the limit of the relative visitation frequency of � during
the chaos game.



Chapter 4

IFS on the Space of
Distributions

� ����� �

In what follows
� 5 	�
 �
��� although the extension to 	�
 �
��� � is straightforward.

Distributions [21, 22, 23] are defined as linear functionals over a suitable space of
“test functions”, to be denoted (following the standard notation in the literature)
as
� ���C�

. In this paper,
� ���$� 5 � � ���$�

, the space of infinitely differentiable
real-valued functions on

�
. (Note: In the literature,

� ���C�
is normally taken to

be
� �2 ���$� , the set of

� � ���$�
functions with compact support on

�
. With this

choice, the expressions for distributional derivatives simplify due to the vanishing
of boundary terms.) The space of distributions on

�
, to be denoted as

� � ���$�
, is

the set of all bounded linear functionals on
� ���$�

, that is, 
 � � ���$� � Q , such
that

1.
� 
 � � � � � ? for all � - � ���$� ,

2. 
 � �
H � H � � � � � �95 �
H 
 � � H+� � � � 
 � � � � , �
HI� � � -$Q , � HK� � � - � ���$� .
The space

� � ���$�
will include the following as special cases:

1. Functions �$->7 8 ������� � , � = < = ?
, for which the corresponding distri-

butions are given by


 � � ��5 �
� �

� 1 � � � 1 � � 1 � 	 � - � ���$��� (4.1)

2. Probabilitymeasures
: -$@ ���$�

, for which the corresponding distributions
are given by 
 � � ��5 �

� � � 1 � � :�� 1 �M� 	 � - � ���$��� (4.2)

21
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� � ���$�

3. The “Dirac delta function”,
�,� 1 � �,� , which may be defined in the distribu-

tional sense as follows: For a point
� - � , 
 � � �R5 � ����� for all � - � ���$� .

This is often written symbolically as


 � � ��5��
� � � 1 � �,� 1 � �,��� 1 J (4.3)

Our goal is to construct an IFS-type fractal transform operator
� � � � ���C���� � ���$�

which, under suitable conditions, will be contractive with respect to a given
metric on

� � ���C�
. In the spirit of Section 2, the fractal components of a distribution

(�- � � ���$� would be defined (symbolically) as � � � 1 ��5 ��G � � ( � ���
H

� �I� 1 � and then
combined to form

�
. Such a transform would serve to join the IFSM method over

function spaces and the IFSP method over measure spaces under one common
scheme.

The following property is very important in establishing a representation the-
ory for distributions in

� � ���$�
.

Theorem 3 [23] For any distribution/linear functional 
 - � � ���$� , there exists
a sequence of test functions � � - � ���$� , �$56� � ,��LJ J J

, such that for all � - � ���$� ,
	 � �
��� � 
 � � � � 5 	 ���

��� �
�
� � �

� 1 � � � 1 ��� 1
5 � 
 � � ��J (4.4)

By recourse to this result, it will be convenient to express the linear functional
)- � � ���C� symbolically as


 � � � 5 �
� �

� 1 � � � 1 � � 1
5 � � � � � � (4.5)

even though there may not exist a pointwise function � � 1 � which defines the dis-
tribution 
 (e.g. Dirac distribution). The sequence of test functions � � in the
above theorem will then be said to converge to the distribution � “in the sense of
distributions”. For notational convenience we shall write that “ ��- � � ���C� ”.

Lemma 1 Let �/- � � � H ���C� with Jacobian
� ��� �5 
 and ( - � � ���C� with asso-

ciated linear functional


 � � ��5 �
� (

� 1 � � � 1 ��� 1 � � - � ���$�MJ (4.6)
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Then the distribution � 5 ( �"� � H - � � ���$� may be defined (symbolically) as� � � � 5 �
� (

� ���
H � 1 � � � � 1 ��� 1

5 � � � �
� (

� 1 �I� � �"� � � 1 ��� 1 � � - � ���$�MJ (4.7)

Proof: Since (�- � � ���$� there exists a sequence ( � - � ���$� which converges
to ( in the sense of distributions, i.e.

	 ���
��� �

�
� ( �

� 1 � � � 1 ��� 1 5 �
� (

� 1 � � � 1 ��� 1 � 	 � - � ���$��J (4.8)

For
� �6�

define � � � 1 � as

� � � 1 �95 	 ( � � � �
H � 1 ����� 1C- �� ���$���
 � otherwise

J (4.9)

By the change of variable 1 5 � � � � (with Jacobian
� ��� �5 
 ),�

� � � � � � � � 1 ��� 1 5�� � � � � ( � � � �I� � �"� � � � ��� � J (4.10)

Since � is affine, � �"� - � ���$� for any � - � ���$� . Therefore for each
� � �

,

	 ���
��� �

�
� � � � 1 � � � 1 ��� 1 5 � ��� 	 ���

��� �
�
� ( �

� � �I� � �"� �I� � ��� �
5 � ��� �

� (
� � �I� � �"� �I� � � � � � (4.11)

and the theorem is proved.
Example: Let � � 1 � 5

H
� 1 and ( � 1 � 5 �,� 1 � , the “Dirac delta function” at� 5 
 . Then ( � � �

H � 1 � ��5��,� , 1 �95 H
� �,� 1 � .

Definition 1 Let � - ��� ���C� and
E � � P any sequence in

� ���$�
such that � � � �

in the sense of distributions. Now let
� � Q � Q be such that

� � � � � 5
	 ���
��� �

�
�
� � � � � 1 � � � � 1 ��� 1

exists for all � - � ���C� independently of the sequence
E � � P . Then we define the

distribution
�
� �C- ��� ���$� in terms of the above limits, i.e.

� � � � � � � 5 	 ���
��� �

�
�
� � � � � 1 � � � � 1 ��� 1 � 	 � - � ���$�

5 � � �
� 
 � � � �MJ (4.12)
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If
�

is affine on Q , i.e.
� � 1 �'5 � 1 ��� , where

�O��� -6Q , then trivially the
distribution

�
� � exists for all � - � ���$� . Note, however, that if

�
is Lipschitz

on Q , then the distribution
�
� � need not exist. For example,

� � � � �,� 1 � � is not
defined.

Definition 2 A function
� � Q � Q will be said to satisfy a weak Lipschitz

condition on
� � ���$�

if there exists a

 � 
 such that for all � - � ���$� ,

����
�
� 	
� �
� � H � � 1 � � � � � � � �I� 1 � � � � 1 � � 1 ���� = 
 ����

�
� 	 �

H � 1 � � � � � 1 � � � � 1 ��� 1 ����
	 � HK� � � - � � ���$�MJ (4.13)

If
�

is affine on Q , then it satisfies a weak Lipschitz condition on
� � ���$�

.

Lemma 2 Let
� � Q � Q satisfy a weak Lipschitz condition on

� � ���$�
. Then for

any � - � � ���$� , � � ��- � � ���$� exists.

Proof: Let � - � � ���$� and, from Theorem 1, � � - � ���$� , �C5/� � ,��LJKJKJ
such

that � � � � as
� � ?

in distribution. This implies that for any � - � ���$� ,
given an � � 
 , there exists an

��� � 
 such that
����
�
� 	 � �

� 1 � � ��� � 1 � � � � 1 � � 1 ���� � � � 	 � � � � � � J
(4.14)

Since
����
�
� 	
� �
� � � �I� 1 � � � � � � � �I� 1 � � � � 1 ��� 1 ���� = 
 ����

�
� 	 � �

� 1 � � � � � 1 � � � � 1 ��� 1 ����= 

�
	 �$� � � ���9�

(4.15)

we may define, for each � - � ���$� ,�
�
� �
� � �I� 1 � � � 1 ��� 1 5
	 ���

��� �
�
�
� �
� � � � � 1 � � � 1 � � 1 J (4.16)

We now define an � -map IFS on Distributions (IFSD)
� � � D � as follows:

1. The IFS component: � 5)E � H � � � �KJLJKJ�� � N P , � � - � � � H ���$� , with Jaco-
bian

� � � � �5 
 ,
2. The grey level component: D 5 E�G9HI�IG � �LJKJKJ+�IGON4P , G �S�3Q � Q satisfies

a weak Lipschitz condition on
��� ���$�

(with Lipschitz constant

 � ).
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An operator
� � � � ���$��� � � ���C�

will now be associated with this � -map IFSD.
For any � - � � ���C� , the distribution

�C5 � � will be defined by the linear func-
tional � � � �*5 �

�
� � 1 � � � 1 ��� 1

5 �
�
� � � �I� 1 � � � 1 ��� 1

5
N�
�*$ H � � ��G � � � �"� �

H
� �I� 1 � � � 1 ��� 1 J (4.17)

From Lemmas 1 and 2, it follows that
�

maps
� � ���$�

into itself. We now
define the following metric on

��� ���$�
:

� 
 �
� � � ���S5 �����

�  � & � � 

����
�
� �

� 1 � � � 1 � � 1 � � � � � 1 � � � 1 � � 1 ���� � 	 � � � - � � ���$��J
(4.18)

where
� H ���$�"56E � - � � ���$� � � � �

�
= � P

.

Theorem 4 The metric space
� � � ���$����� 
 �

�
is complete.

Proof: Let
E � � P �� $ H be a Cauchy sequence in

� � � ���C�M�+� 
 �
�
, that is, for any

� � 
 , there exists an �� � � � such that
� 
 �

� ��� � � � � � � for all
� � � � �� � � � . From

the definition of
� 
 � in Eq. (4.18), it follows that for any fixed �6- � H ���$� , the

sequence of real numbers
E-� � � � �MP �� $ H , where

� � � � ��5 �
� � �

� 1 � � � 1 ��� 1 � (4.19)

is a Cauchy sequence on Q . Let ��L� � � denote the limit of this sequence. By
setting 
 � � � 5 ��L� � � we define a bounded linear functional 
 on

� H
���$�
. This

procedure can easily be extended to all test functions � - � � ���C� by noting that� �
H � - � HK���$� where

� 5�� � �
� . Therefore

� � � ���$����� 
 �
�

is complete.
Remark: By restricting the test functions employed in the

� 
 � metric to� H ���$�
(as opposed to the entire space

� � ���$�
), we ensure that the set of Cauchy

sequences in
� � ���$�

is nonempty.

Theorem 5 Let
� � � D � be an � -map IFSD, � �9- � � � H ���$� . Then for any � � � -� � ���$�

,

� 
 �
� � � � � �,�T= � 
 � 
 �

� � � �,��� � 
 5
N�
�*$ H � � � � 
 � J (4.20)
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Proof: Let � - � H ���C� . Then

� �
� 	
� � � � � 1 � � � � ��� � 1 � � � � 1 � � 1 �

5 �����

N�
�*$ H � � 
 	 G � � � � � �

H
� � 1 � ��� � G � � � � � �

H
� � 1 � � � � � � 1 ��� 1 �����

5 �����

N�
�*$ H � � � �

�
� 	
G � � � � � ��� � G � � � � � � � � � � �"�T� � � � � � � �����

=
N�
�*$ H � � � �

����
�
� 	
G � � � � � ��� � G � � � � � � � � � � �"�T� � � � � � � ����

=
N�
�*$ H � � � � 
 �

����
�
� 	 �

� � � � � � � � � � � �"� � �I� � � � � ���� J (4.21)

The desired result follows from the fact that � �"� �9- � HL���$� .
Corollary 1 Let

� � � D � be an � -map IFSD, � � - � � � H ���$� , such that

� 
 5
N�
�%$ H � � � � 
 � �6�
J

(4.22)

Then there exists a unique distribution �( - � � ���$� such that
� �( 5 �( , where

�
is the operator asssociated with the IFSD. Furthermore,

� 
 �
� ��� ( � �( � � 
 as� � ?

for all ($- � � ���$� .

4.1 Affine IFSD and the Connection with IFSP and
IFSM

For affine IFSD
� � � D � on

��5 	 
 ���M� , the IFS and grey level maps have the forms

�T� � 1 �95�� ��1 � � � � G � ���+��5 � � � � � � ��� =��S= � � (4.23)

with
� � 5�� � � �
5�� � � � . Given an operator

� � ��� ���$�"� � � ���$�
associated with an

affine IFSD, an adjoint operator
� � � � ���$� � � ���$�

may be defined as follows:
For all � - � ���C� ,

� � � � � � 5 � � � � � � �
5

N�
�%$ H � � � � � � �"�T� �I� 1 � � N�

�*$ H � � � � � � � � �"�T� �I� 1 � � 1 J (4.24)
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In the special case that � � � 
 and
� � 5 
 , � = � = � and

" N�*$ H � � � � 5�
, then

� �
becomes the adjoint operator on

� ���$�
associated with the � -map

IFSP
� � � � � with probabilities < � 5 � � � � , cf. Eq. (3.50). The associated IFSD

operator
�

coincides with the Markov operator
�

on @ ���$�
. However,

�
is

not necessarily contractive in the complete metric space
� � � ���$����� 
 �

�
since we

may have
� 
 5��

. (See Example 3 below.) However, in the subset @ ���$��

� � ���$�

,
�

is contractive with respect to the Hutchinson metric
�
�

. (Note that
the test functions used for the

���
metric are � � < H functions.) By construction

�
maps each “shell” of measures @ �

���$� 5 EK: � :����$� 5 
 � 
 P to itself and is
contractive on that shell with respect to the

�
�
metric. Therefore, there exists a

ray of fixed point measures of
�

which belong to
� � ���$�

.
Now let the fixed point distribution �( of an � -map affine IFSD be considered

as a density function for a measure �: on A ���C� , i.e.

�:�� � � 5 �
� 
 �

� 1 � �( � 1 � � 1 5 �
�
�( � 1 � � 1 J (4.25)

(Note that �: is not necessarily a probability measure although we may suitably
rescale �( to make it so.) From Eq. (3.36),

�:�� � � 5
N�
� $ H � � � � �:�� � �

H� � � � � �
N�
� $ H � � � � � � � � H� � � ����� (4.26)

where
�

denotes Lebesgue measure. Again in the special case that � � � 
 and� � 5 
 , � =#�T= � and
" N�*$ H � � � � 5/�

, Eq. (4.26) is identical to Eq. (3.46) for
invariant measures of IFSP.

Examples: In all cases
� 5 	�
 �
��� and � 5�,

with � H
� 1 �95
H
� 1 and � � � 1 ��5H

� 1 �
H
� .

1.
GRHL���+� 5 G � ���+� 5 H

� � � H
� . The associated fractal transform operator

�
is

contractive in
� � � ���$�M�+� 
 �

�
with contraction factor

� 
 5 H
� . The fixed

point �( � 1 �$5 �
is an element of

��� ���$�
as well as of 7 8 ����� ��� for all

<0- 	�
 �I? � , since
�

is also contractive in
� 7 8 ��� 8

�
.

2.
GRHL���+��5 G � �%�+��5 H

� � . � is again contractive in
� ��� ���$����� 
 �

�
with

� 
 5 H
� .

Here, �( � 1 �95 
 .
3.
GRHL���+�45 G � �%�+�45 �

.
�

is not contractive in
� � � ���$�M�+� 
 �

�
. Here,

� 
 5 �
and the equality in Eq. (4.20) holds. The functions ( � 1 ��5 � (a.e.),

� - Q ,
are fixed points of

�
. A fixed point attractor �( - � � ���$� is the Lebesgue

measure on [0,1]. In order to see this, let us take ( 2 � 1 �T5 �,� 1 � , the Dirac
delta function at 1 5 
 and form the sequence ( � � H 5 � ( � , for

��� 
 .
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From Eq. (4.17), ( H � 1 �95
H
� �,� 1 � �

H
� �,� 1 �

H
� � and

( � � 1 ��5
�, � �
�
�
H�

� $ 2 �,� 1
� �, � ��J (4.27)

Let 
 � denote the linear functionals associated with the ( � , i.e. 
 � � � �45
� � ( � � 1 � � � 1 ��� 1 . Then

	 � � ��� � 
 � � � ��5 � � � � 1 � � 1 .

If ( 2 � 1 �45 
 �,� 1 � , 
 � 
 , then the sequence ( � � H 5 � ( � converges to
the uniform Lebesgue measure

�
� where

�
�
� 	�
 �
�����;5 
 .

One final remark concerning this example: It is also a 2-map IFZS on
[0,1] (cf. Section 3.2). The associated IFZS operator

�
is contractive on� %'& ���C�M�+� � � and the attractor is �( � 1 �R5 �

.

4.2 Integrals Involving Affine IFSD

Let
� � � D � be an � -map affine IFSD on

� 5 	�
 �
��� with associated operator� � � � ���$� � � � ���C�
. If � - � � ���$�

is defined by 
 � � ��5 � � � � � , the
distribution

� 5 � � will be given by
� � � � , where

� � � ��5 N�
�%$ H � � � � � � � � � �I� � �"�T� �I� � � � � �

N�
�*$ H � � � � � � � � �"�T� �I� � ��� � (4.28)

By iterating this procedure, we obtain, for
� 5 �
�-, �KJKJLJ

,
� � � � � � � 5 �6� � � � � � � � �

5
N�

�'& ������� � � � < � &
JLJKJ < ��� � � � � � �I� � �"� � & � JKJLJ �"� ��� � � � ��� �

�
��
� $ H

N�
� & ������� � � 
 <!� &

JKJKJ <,� 
 � & � � 
 � � � � �"�T�'& � JKJKJ �"�T� 
 �I� � � � � �
(4.29)

where <!� 5 � � � � and � � 5 � � � � , � =#��= � . (This result may be compared with
the IFSP case in Eq. (3.51).)

If
�

is contractive then it possesses a fixed point �( - � � ���$�
. Moreover,��� � � �( as

��� ?
in distribution for any ��- ��� ���$� . Setting � 5 �( and

� 5 �
in Eq. (4.29), we obtain

�
� �( � 1 � � � 1 � � 1 5

N�
�*$ H � � � � � � �( � � � � � �"�T� � � � � � �
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�
N�
�*$ H � � � � � � � � �"� � � � � � � � J (4.30)

For example, in the case � � 1 �45 1 � , we obtain a set of equations which permit
the recursive computation of the moments

� � 5 � � 1 � �( � 1 ��� 1 . These equations
necessarily coincide with those obtained from the IFSM method [10]. In the spe-
cial case

� � 5 
 , � = ��= � , and
" N�*$ H <,� 5 �

, we obtain the recursion equations
for moments

� � of an invariant measure of the affine IFSP
� � � � � [10].

In general, however, integrals involving the fixed point �( can not be solved
recursively or in closed form, e.g. � � 1

H�� � �( � 1 � � 1 . We may, however, use the fact
that �

� �( � 1 � � � 1 ��� 1 5
	 ���
��� �

�
�
� � � � � � 1 � � � 1 � � 1 � 	 � - � �����C�MJ (4.31)

For an 1 2 - � , set � � 1 �S5 �,� 1 � 1 2 � , the Dirac delta function at 1 2 , to obtain

�
�
� � � � � � 1 � � � 1 � � 1 5 N�

� & ������� � � � < � &
JLJKJ < ��� � � �"� � & � JLJKJ �"� � � � � 1!2 �

�
��
� $ H

N�
�'& ������� � � 
 � �'&

JKJLJ
� � 
 � & � � 
 � � 
 & � 
 ( ������� � 
 
 � � 1 � � 1 � (4.32)

where
� �'& � �*( ������� � � 
 5 ��T�'& � ��T�*( � JLJKJ � ��T� 
 ���$� . This expression is somewhat

more complicated than Eq. (3.51), its counterpart for measures. However, the
integrals are generally easy to compute. As with Eq. (3.51), the evaluation of this
expression involves the enumeration of � -trees to

�
generations.

Example: We consider the following 3-map affine IFSM:

� HK� 1 �*5 
 J�� 1 � G HK���+��5 �I�
� � � 1 �*5 
 J�� 1 � 
 J���� G � ���+�S5 
 J ,�� � � 
 J ,����
� . � 1 �*5 
 J�� 1 � 
 J���� G . ���+�S5 �IJ

(4.33)

The associated operator
�

is contractive in
� 7 8 ������� �M�+� 8 � for < 5 �

. A his-
togram approximation of the attractor �( of this IFSM is shown in Figure 4.1. The
power moments

� � of �( ,

� � 5 �
� 1
� �( � 1 ��� 1 � ��5 
 ��� � ,��LJKJLJ�� (4.34)

may be computed in closed form via Eq. (4.30) [10]. The first four moments are:

� 2 5.� �
�,H 5 �, � � � 5 �	�,�
�+,�
�� �
� . 5 ,,�
�


����
J

(4.35)
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In Table 4.1 are shown approximations to these moments as well as to the inte-
gral

� H�� � 5 � � 1
H�� � �( � 1 � � 1 , as computed from Eq. (4.32). (There is no closed

form expression for
� H�� � .) The convergence of the approximations with increas-

ing
�

is evident. (The results for
� H

are not shown since all approximations were
in agreement to at least seven digits of accuracy.) Also note that the Hausdorff
inequalities must be satisfied by the moments. In this case, we observe that� 2 � � H�� � � �,H � � � � � . .
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Figure 4.1: The fixed point attractor ( � 1 � of the IFSM given in Eq. (4.33) of the
text.

� � H�� � � � � .
1 0.677591201 0.323333333 0.235
2 0.668876203 0.333893333 0.25084
3 0.666482494 0.335413973 0.25312096
4 0.665849446 0.335632945 0.253449418
5 0.665685332 0.335664477 0.253496716
6 0.665643243 0.335669018 0.253503527
7 0.665632513 0.335669671 0.253504508
8 0.665629787 0.335669766 0.253504649
9 0.665629095 0.335669780 0.253504669

10 0.665628920 0.335669782 0.253504672
Exact 0.335669782 0.253504673

Table 4.1: Approximations to integrals
�
�
5 � � 1 � �( � 1 � � 1 as computed from Eq.

(4.32). Here �( is the fixed point of the IFSM given in Eq. (4.33).
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