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Abstract. We show how fractal image coding can be viewed and gen-
eralized in terms of the method of projections onto convex sets (POCS).
In this approach, the fractal code defines a set of spatial domain sim-
ilarity constraints. We also show how such a reformulation in terms of
POCS allows additional contraints to be imposed during fractal image
decoding. Two applications are presented: image construction with an
incomplete fractal code and image denoising.

1 Introduction

In this paper we show how fractal image coding can be formulated in terms of a
powerful method known as projections onto convex sets (POCS) [15].

In standard fractal image coding [1, 3, 7, 11], images are normally considered
as elements of a complete function space F , e.g., Lp(X), for X ⊂ R2. Given
an image function u, we seek a contractive operator T : F → F such that its
fixed point ū is a good approximation to u. This comprises fractal coding. At the
decoding stage, the fractal transform T is applied iteratively to an initial “seed”
image u0. Banach’s contraction mapping theorem guarantees the convergence of
the iterates defined by un+1 = Tun to ū.

One may, however, consider this decoding process to be too restrictive since
any additional knowledge about the original image (e.g., bounding constraints on
the pixel values) cannot be applied simultaneously with the fractal transform. In
practice, therefore, additional constraints have usually been applied to the fixed
point of the contraction map T . Such post-processing is usually equivalent to
the application of projections on the fixed point. For example, thresholding the
data in order to enforce certain bounds is simply a projection of the the data
onto the space of images that lie within those bounds.

In our POCS approach, a fractal code is considered as a set of similarity
constraints in the spatial domain. Fortunately these constraints are convex and
closed, and therefore satisfy the requirements in setting up a POCS approach.

In what follows, we shall show how POCS can provide the opportunity to
apply the fractal code of an image simultaneously with additional constraints
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during the decoding stage. These constraints may include other spatial, statisti-
cal, spectral and pattern properties of the unknown image, e.g., bounds on pixel
values, bounded energy, smoothness, similarity to the observed data, etc..

A most interesting consequence of such a POCS-type reformulation allows us
to bypass the traditional view of fractal coding as simply a mapping of domain
image subblocks onto range image subblocks. Instead, we consider the applica-
tion of the projections on a closed and convex set that is constructed using the
similarity constraint between the domain and range subblocks. This type of pro-
jection translates to a simultaneous alteration of domain-range block pairs. In
this paper, we introduce such projections explicitly and examine some interesting
implications and applications.

Let us qualify that we are not interested in the compression capabilities of
fractal image coding here. Our study picks up upon the thesis of H. Puh on set-
theoretic coding [13]. In that work, there were no explicit details on how the self-
similarity properties of an image can be translated into POCS-type inequality
constraints.

2 Some basics of fractal image coding

More details on fractal image coding can be found in many places [1, 3, 7, 11],
including one of our recent papers on fractal-based denoising [9].

2.1 Fractal image encoding

Fractal image coding seeks to approximate an image by a union of spatially-
contracted and greyscale-modified copies of subblocks of itself. If we let the image
of interest I be represented by an image function u(x, y), then the result of the
coding procedure is a contractive mappping T , the so-called fractal transform
operator, the fixed point ū of which provides an approximation to u. In other
words,

u ∼= ū = T ū. (1)

To obtain T , the image I is first partitioned (e.g., uniform, quadtree) into a
set of nonoverlapping range blocks Ri. For each range block Ri, one searches for
a larger domain block Di (from an appropriate “domain pool” D that is often
common to all range blocks of the same size) such that u(Ri) is approximated
as well as possible by a modified copy of u(Di), i.e.,

u(Ri) ∼= φi(u(Di)) = φi(u(w−1
i (Ri))), (2)

where φi : R → R is a greyscale map that operates on pixel intensities and wi

denotes the 1-1 contraction/decimation that maps pixels of Di onto pixels of Ri.
The fractal code defining T consists of the maps φi as well as the domain-range
assignments determined during the coding procedure.

In the calculations reported below, we employ the simplest form of parti-
tioning, namely a uniform scheme. The range blocks Ri will be N × N square
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nonoverlapping pixel blocks. They will share a common domain pool D that
consists of all nonoverlapping 2N × 2N pixel blocks. This choice of domain pool
is, of course, nonoptimal. The set of all 2N × 2N pixel blocks obtained by single
pixel-shifts would be better but search times would be enormous. In any case,
the purpose of this paper is to show the basics of a method that can be adapted
to any paritioning scheme.

Finally, there are 8 ways – four rotations and four inversions – by which a
larger square domain block Dj can be contracted/decimated and then mapped
onto a smaller range block Ri. We shall index these possible transformations

by means of a k superscript in the spatial mapping, i.e., w
(k)
i : Di → Ri, k =

1, 2, · · · , 8.

Let us now assume that we have fractally coded an image function u according
to Eq (2). Because of the nonoverlapping nature of the partition, we may write

u(x, y) ∼= (Tu)(x, y) =
∑

i

φi(u(w−1
i (x, y))). (3)

The image function u is thus approximated as a union of spatially-contracted
(wi) and greyscale-distorted (φi) copies of itself. This union of modified copies
(a trivial consequence since the copies do not overlap) defines a special kind of
fractal transform operator T . If the above approximation is a good one, then the
so-called collage distance ‖ u− Tu ‖ is small. ¿From the “Collage Theorem” [2],

‖ u − ū ‖ ≤
1

1 − cT
‖ u − Tu ‖, (4)

it then follows that if u is “close” to Tu, then u is also close to ū, the fixed point
of T . Here, cT ∈ [0, 1) denotes the contraction factor of T . The quantity ‖ u− ū ‖
is the error of approximation of u by ū.

In practice, one normally assumes the greyscale maps φi to be affine, i.e.,

φi(t) = αit + βi. (5)

For a given domain-range block pair Dj/Ri, the optimal value of the α and β
parameters is usually accomplished by means of least-squares fitting. If we let xm

and ym, m = 1, 2, · · · , N2 denote the pixel greyscale values of the w(k)-decimated
domain block Dj and range block Ri, respectively, then α and β are determined
so that that the squared L2 “collage distance” over Rj ,

∆(k) =

N2

∑

m=1

[ym − αxm − β]2, (6)

is minimized. In the construction of the fractal transform operator T , we choose,
for each range block Ri, the domain block Dj ∈ D and geometric transformation
w(k) which yield the minimum collage distance ∆(k). In this way, the total collage
distance ‖ u − Tu ‖ in Eq. (4) is minimized.
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2.2 Fractal image decoding

Given a contractive fractal transform T , we may generate its fixed point ū by
the iteration procedure un+1 = Tun, starting with an arbitrary “seed” image
u0.

Fig. 1. The fractal transform operator designed to approximate the 256× 256 (8 bpp)
“Lena” image (Left). The “seed” image was u0(x) = 255 (plain white). The fractal
transform T was obtained by “collage coding” 8×8 nonoverlapping pixel range blocks.
The domain pool was comprised of nonoverlapping 16 × 16 pixel blocks.

In the decoding prodedure, the image subblocks un(Ri) of un are replaced by
modified copies φi(un(Di)) according to Eq. (2). Banach’s contraction mapping
theorem guarantees that the sequence of images un converges to ū.

In this scheme, the range blocks Rn+1,i comprising image un+1 are sim-
ply modified versions of appropriate domain blocks Dn,i of un. More precisely,

un+1(Ri) = φi(w
(k)
i (un(Di))).

In Figure 1 is presented the fixed point approximation ū to the standard
256 × 256 Lena image (8 bits/pixel) using a partition of 8 × 8 nonoverlapping
pixel blocks (642 = 4096 in total). The domain pool for each range block was
the set of 322 = 1024, 16× 16 non-overlapping pixel blocks. (This is clearly not
optimal.) This image was obtained by starting with the seed image u0(x) = 255
(plain white image) and iterating un+1 = Tun to n = 15.

3 Set Theoretic Image Coding and Restoration

The method of projections onto convex sets (POCS) has attracted much atten-
tion in a multitude of image restoration and reconstruction applications. The
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main reasons are the simplicity, flexibility, and powerful inclusion of a priori
information. It is generally simple to define convex constraint sets which incor-
porate desired solution characteristics. These sets may impose restrictions such
as positivity or bounded energy which are difficult to represent in terms of cost
functionals. The only potential source of difficulty in applying POCS is to deter-
mine the projection operators. If the the convex and closed sets are constructed
and the projections are found, a point in the intersection these sets can be found
if the intersection is not empty.

Assume that x is known to lie in m given sets Ci, i = 1, 2, . . . , m where each
of the sets represents a constraint on the image. If the sets Ci are closed and
convex, we associate projection operators Pi, i = 1, 2, . . . , m, to each Ci. The
projection of h onto Ci is defined as g = Pih, with g ∈ Ci and

‖g − h‖ = inf
y∈Ci

‖y − h‖. (7)

Bregman [4] proved that if the sets Ci, i = 1, 2, . . . , m are closed and convex and
⋂

i Ci 6= ∅, then the sequence {X(n)} defined recursively as

X(n+1) = Pm . . . P2P1X
(n), (8)

converges to a fixed point in the intersection of all Cis. In other words, X(n)

converges to a point X , where X ∈
⋂

i Ci. This sequence of projections is applied
repeatedly to yield an updated estimate of the image. It is imperative to note
that the point X is, in general, nonunique. Its only distinguishing feature is that
it lies on the intersection of all constraint sets. In general, it will be dependent
on the initial guess X0). Detailed theoretical discussions of the POCS method
can be found in [4, 10, 15].

4 POCS and fractal image coding

In this section we consider a number of self-similarity constraints along scales
which can then be used to reformulate fractal image coding as a POCS method.
It is assumed that an image has a continuous representation as a function in
Lp(X) where X ⊂ R2. The theoretical basis for this discussion (e.g., proofs of
propositions) has been presented elsewhere [6].

4.1 Self-similarity constraints using collage distances

The collage distance is an important measure of self-similarity. We shall consider
three different types of collage distances from which similarity constraints can
be built. These are (i) the total collage distance, (ii) the collage distance for a
fixed domain-range block pair and (iii) the pointwise collage distance.

Definition 1. For a given image u ∈ Lp(X), where 1 ≤ p ≤ ∞ we introduce
the following collage distance definitions.
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a) The total collage distance is defined as

∆(u) =
∥

∥

∥
(Tu)− u

∥

∥

∥

p
(9)

=
(

∫

(x,y)∈X

∣

∣

∣

∑

i

φi(u(w−1
i (x, y))) − u(x, y)

∣

∣

∣

p

dxdy
)

1

p

,

when 1 < p < ∞. Appropriate definitions are used for p = 1 and p = ∞.
b) The collage distance for a fixed pair of domain and range blocks is

∆
(k)
(i,j)(u) =

∥

∥

∥
φi

(

u
(

w−1
i,j,(k)(Ri)

)

)

− u(Ri)
∥

∥

∥

p
(10)

=
(

∫

(x,y)∈Ri

∣

∣

∣
φi(u(w−1

i (x, y))) − u(x, y)
∣

∣

∣

p

dxdy
)

1

p

,

where 1 < p < ∞. Again, appropriate definitions are used for p = 1 and p = ∞.
As before Ri is a range block. w−1

i,j,(k), is the inverse of contraction from Dj to

Ri and (k) = K(i,j) ∈ {0, . . . , 7}.
c) The pointwise collage distance is defined as

∆
(k)
(i,j)(x,y)(u) =

∣

∣

∣
φ
(

u
(

w−1
i,j,(k)(x, y)

)

)

− u(x, y)
∣

∣

∣
, (11)

where (x, y) ∈ Ri.

By its nature, fractal image coding implies perfect self-similarity between
elements in the range and domain pool of an attractor image ū. In natural images,
however, perfect self-similarity generally does not hold. Therefore, a model that
is more consistent with the physical world would allow collage distances, as
measures of similarity, to deviate from zero but not beyond some threshold value,
say δ > 0. Such threshold values can be determined based on the application.
Such a framework provides more flexibility to incorporate additional knowledge
about the image and to relax the perfect self-similarity constraint in order to
obtain a better approximation of an image in the reconstruction process. In
the perfect self-similarity assumption case, this threshold may be set to zero,
representing perfect consistency with traditional fractal image coding.

Each of the three collage distances described above may be used in the pro-
cedure. Associated with each collage distance are the following self-similarity
constraints in Lp(X) for 1 ≤ p ≤ ∞. (i) Based on the total collage distance
define

Ψ =
{

u ∈ Lp(X) : ∆(u) ≤ δ
}

. (12)

(ii) Based on range based collage distance define

Ψ
(k)
(i,j) =

{

u ∈ Lp(X) : ∆
(k)
(i,j)(u) ≤ δ

(k)
(i,j)

}

. (13)
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(iii) Finally define the set Ψ
(k)
(i,j)(x,y) based on the pointwise collage distance as

Ψ
(k)
(i,j)(x,y) =

{

u ∈ Lp(X) : ∆
(k)
(i,j)(x,y)(u) ≤ δ

(k)
(i,j)(x,y)

}

. (14)

Closedness and convexity of these sets can be verified easily under some
trivial assumptions [6]. In practice, when dealing with digital images we need to
construct new convex and closed sets based on the image greyvalues at discrete

points. In the following section, we study the discrete counterpart of Ψ
(k)
(i,j)(x,y).

4.2 Discrete pointwise collage constraints and associated projections

When we are working with discrete digital images, we may assume any digital
image U ∈ l2(X), where X is a bounded subset of Z2. Note that in the contin-

uous case, we considered the set Ψ
(k)
(i,j)(x,y) for (x, y) ∈ Ri. In the same fashion,

for the discrete case, we define Ψ
(k)
(i,j)(m,n), where (m, n) is a point with integer

coordinates over a fixed Ri.

Ψ
(k)
(i,j)(m,n) =

{

U ∈ l2(X) : ∆
(k)
(i,j)(m,n)(U) ≤ δ

(k)
(i,j)(x,y)

}

(15)

=
{

U ∈ l2(X) :
∣

∣

∣
φ
(

U
(

w−1
i,j,(k)(m, n)

)

)

− U(m, n)
∣

∣

∣
≤ δ

(k)
(i,j)(m,n)

}

In the discrete case (m, n) corresponds to four points (s, t), (s, t+1), (s+1, t),
and (s+1, t+1) under the inverse mapping w−1

i,j,(k)(m, n). Here U
(

w−1
i,j,(k)(m, n)

)

can be written as

U
(

w−1
i,j,(k)(m, n)

)

=
1

4

{

U(s, t)+U(s, t+1)+U(s+1, t)+U(s+1, t+1)
}

. (16)

Hence, replacing φ(t) = αt + β yields

Ψ
(k)
(i,j)(m,n) =

{

U ∈ l2(X) :
∣

∣

∣

α

4

{

U(s, t) + U(s, t + 1) + U(s + 1, t) (17)

+ U(s + 1, t + 1)
}

+ β − U(m, n)
∣

∣

∣
≤ δ

(k)
(i,j)(m,n)

}

.

Proposition 1. [6] Ψ
(k)
(i,j)(m,n) is a closed and convex set on the Hilbert space

l2(X) provided that φ(t) = αt + β.

Now that the convex and closed constraints are constructed we have to find the
projection operators on these sets.

Proposition 2. [6] Assume an element U is given in the Hilbert space l2(X),

where X is a bounded subset of Z2. Let V be the projection of U on Ψ
(k)
(i,j)(m,n).
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This projection can be computed in the following manner. Assume that the four
points in the set

A =
{

(s, t), (s, t + 1), (s + 1, t), (s + 1, t + 1)
}

(18)

are those that are mapped to (m, n) under the contraction wi,j,(k). Set δ =

δ
(k)
(i,j)(m,n) ≥ 0 and

r =
α

4

[

U(s, t) + U(s, t + 1) + U(s + 1, t) + U(s + 1, t + 1)
]

+ β −U(m, n). (19)

In the case that (m, n) /∈ A, the values V (p, q) for p, q ∈ Z can be computed as

U(p, q) +











































































































Case (p, q) ∈ A
−α/4

1+4(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
−α/4

1+4(α/4)2 (r + δ), r < −δ

Case (p, q) = (m, n)
1

1+4(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
1

1+4(α/4)2 (r + δ), r < −δ

Case (p, q) /∈ A ∪ {(m, n)}
0.

(20)

In the case that (m, n) ∈ A, the values V (p, q) for p, q ∈ Z can be computed as

U(p, q) +















































































































Case (p, q) ∈ A \ {(m, n)}
−α/4

(1−α/4)2+3(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
−α/4

(1−α/4)2+3(α/4)2 (r + δ), r < −δ

Case (p, q) = (m, n)
1−α/4

(1−α/4)2+3(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
1−α/4

(1−α/4)2+3(α/4)2 (r + δ), r < −δ

Case (p, q) /∈ A
0.

(21)
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The above projection can be found using KKT conditions for solving con-
strained optimization problems. Another approach to prove this proposition is
to view the optimization problem as a deblurring of a signal in presence of

spatially-varying blur [14]. Now that the constraints Ψ
(k)
(i,j)(m,n) and its associ-

ated projections are in hand we may apply these constraints in a POCS sequence
along with other consistent constraints at the decoding stage.

5 Applications

5.1 Restoration of an image with an incomplete fractal code

Assume that we are given an incomplete fractal code of an image, i.e., some of the
domain-range block assignments and corresponding greyscale map coefficients
are missing. In such a case, the usual fractal decoding scheme, in which an
arbitrary “seed” image is employed, will collapse since the range blocks of the
image for which the fractal code is missing cannot be modified. These blocks
will simply remain identical to the corresponding subblocks of the seed image.

To illustrate, let us consider the fractal code associated with the Lena image
in Figure 1. Suppose that the fractal code corresponding to all range blocks in
the bottom half of the image are missing. Using a random image as the seed, the
limiting image produced by the fractal decoding procedure is shown in Figure
2(b). Only the domain blocks in the top-half of the image have been modified
– those in the lower half are identical to their counterparts in the seed image.
Likewise, if the fractal code is missing for the range blocks depicted in black in
Figure 2(d), then fractal coding produces the limiting image in Figure 2(e). We
now show how these two situations can be improved using POCS.

The incomplete fractal code problem is an underdetermined, hence ill-posed,
inverse problem. There are many possible solutions. We now consider a POCS-

type method that will employ the pointwise collage constraints Ψ
(k)
(i,j)(m,n) with

δ = 0, associated with the partially known fractal code. For the problem as-
sociated with Figure 2(b), where the fractal code for the bottom half of image
is missing, we obtain Figure 2(c) with this POCS method, having once again
started with the random seed image. Figure 2(c) is seen to represent a signifi-
cant improvement over Figure 2(b).

Along with the collage constraints, however, we can impose additional con-
straints as desired. For example, consider the missing fractal code problem of
Figure 2(d). Standard fractal decoding yields Figure 2(e). The POCS method
with an additional smoothness constraint produces Figure 2(f), a significant im-
provement over Figure 2(e). The smoothness constraint was imposed by means
of a low-pass filtering operation in the frequency domain.

Let us now explain why the POCS method can yield better approximations to
the original image in the case of missing fractal codes, with particular reference to
Figures 2(b) and 2(c). As mentioned above, the usual fractal decoding iteration
scheme of mapping domain blocks to range blocks does not change the range
blocks for which the fractal code is missing, e.g., the bottom part of the image
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(a) (d)

(b) (e)

(c) (f)

Fig. 2. (a) Lena original. (b) Decoded as bottom half of the fractal code is missing,
random seed. (c) Proposed using POCS. (d) A quarter of the code related to the range
blocks in black is missing. (e) Decoded image starting from black seed, a quarter of the
fractal code is randomly missing. (f) Proposed using POCS.
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in Figure 2(b). On the other hand, the POCS method alters domain and range
blocks simultaneously through projections. Because of these projections, it is
possible that portions of the lower part of the image are modified since some
domain blocks used in the fractal coding procedure come from that region. The
more domain blocks that lie in the region of missing fractal code (hence missing
range blocks), the “fuller” the attractor that is generated by the fractal coding
procedure, hence the better the approximation to the original image.

Here we come to a very important point regarding the POCS formulation
of fractal coding. The usual fractal coding procedure involves mapping domain
blocks onto range blocks. The POCS method of projections actually translates
to a simultaneous alteration of domain-range block pairs. This accounts for the
superior results of the POCS method in the incomplete fractal code problem.

5.2 Fractal image denoising

It is well known that subjecting a noisy image to a lossy compression scheme,
e.g., JPEG, can produce some denoising of the image. This is also observed in
the case of fractal image coding. If a noisy image is fractally coded, with little or
no regard for compression, then the attractor produced by the fractal code often
represents a significantly denoised version of the original image. (In fact, one can
go some steps further and improve this procedure – see [9].) In such fractal image
denoising algorithms, however, one performs the usual iteration procedure after
the fractal code is obtained. Once again, regardless of the starting seed image,
the procedure converges to the attractor of the fractal transform defined by
the code. However, the POCS-based reconstruction algorithm explained in this
paper can provide added flexibility. For example, if we choose the input noisy
image as the starting point of the iteration, it is possible that the procedure
converges to a noise-free image that is closer to the original noisy image.

As discussed earlier, the solution of the POCS-based reconstruction method
– the point X of Section 3 – can also depend on the starting point of the itera-
tion if the solution space is non-unique. A larger solution space for POCS-based
fractal coding can be produced if the strict similarity constraints are relaxed to
inequality constraints. Furthermore, if the original noisy image is chosen as the
starting point of the POCS-based iteration, the information in this image is actu-
ally used in the reconstruction process, even after it has been used to determine
the fractal code which determines the similarity/inequality constraints. Based
on experiments, we believe that by choosing appropriate δ tolerance values in
the constraints, one may obtain denoised images that are visually more pleasing
because they are “closer” to the original image.

Figure 3 presents the result of an experiment that agrees with this claim.
The original and a noisy version of a 256 × 256 image of Lena are shown in
Figures 3(a) and 3(b). The fractal transform of the noisy image in Figure 3(b)
corresponding to 8 × 8 pixel range blocks and 16 × 16 pixel domain blocks was
then computed. Traditional fractal decoding produces the attractor shown in
Figure 3(c). In spite of its blockiness, this image looks less noisy than the one
in Figure 3(b).
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(a) (b)

(c) (d)

Fig. 3. (a) Lena original. (b) The noisy Image. (c) The IFS attractor of the noisy
image, using 8 × 8 range blocks. (d) Proposed using POCS, the starting point is the
noisy image, and the same fractal transform with 8 × 8 range blocks is used, with
δ = |r|/3.
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Using the same fractal code as above, we then applied the following POCS-
based reconstruction method. In order to enlarge the solution space we used
δ = |r|/3 at every point of the image in this experiment, where r is defined
in Eq. (19). Finally, the starting point of the POCS iterations was the original
noisy image shown in Figure 3(b). The result of this POCS-based procedure is
shwon in Figure 3(d). Although no postprocessing has been employed here, the
blockiness plaguing Figure 3(c) is not visible in Figure 3(d). As well, it seems
that more denoising has been achieved with Figure 3(d) than with Figure 3(c).

6 Conclusions

In this paper, we have described a reformulation of traditional fractal image
decoding in terms of the framework of projections onto convex subsets (POCS).
In the case that all the constraints defined by the fractal code are applied to the
problem then the solution, defined by the intersection of all constraints, is unique
and correponds to the fixed point of the contractive fractal transform. There is
a difference, however, between the POCS method and the fractal coding method
regarding the nature of the respective iteration procedures and the convergence
toward the solution. In the POCS method, the convergence is accomplished in a
set-theoretic framework. The projections associated with POCS method involve
simultaneous alteration of domain-range block pairs, unlike the case of fractal
coding in which domain blocks are mapped onto range blocks, which may be
viewed as a “greedy process.”

The principal advantage of the POCS framework is that it provides the flex-
ibility to incorporate contraints and possibly additional knowledge about the
reconstructed image. In this framework, it is also possible to replace the strict
equality constraints associated with traditional fractal coding with inqualities
that allow similarities to within some designated threshold. The latter represent
more feasible and realistic conditions encountered in the real world. And, in this
way, the set of feasible solutions is extended.

A POCS-based approach also provides the opportunity of solving underde-
termined inverse problems in fractal coding as we have shown for the case of the
incomplete fractal code problem.

Since the POCS framework allows fractal coding to be employed along along
with additional knowledge about the image/signal, some potential applications
for future consideration include, but are not limited to, the elimination of post-
processing in fractal decoding using POCS-based reconstruction and fractal cod-
ing with overlapping domain and range pools.

Finally, recall that if all similarity constraints defined by the fractal code
are applied strictly, then the solution is unique, namely, the fixed point of the
associated fractal transform operator. If additional constraints are applied in a
POCS-based framework, then then the entire set of constraints may be inconsis-
tent, i.e., there is no “solution” that satisfies all constraints. In this interesting
situation, one may need to employ the more recent POCS formulations for in-
consistent feasibility problems as studied by P. Combettes [5].
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