
Lecture 21

Sequences (cont’d)

The Monotonic Sequence Theorem

Relevant section from Stewart: 11.1

Let us recall a few basic properties of sequences established in the the previous lecture. A sequence

{an}∞n=1 is said to be:

• bounded from above or simply bounded above, if there exists a real number M ∈ R such

that

an ≤ M for all n ≥ 1 , (1)

• bounded from below or simply bounded below, if there exists a real number m ∈ R such

that

an ≥ m for all n ≥ 1 , (2)

• bounded if it is bounded both above and below, i.e., there exist real numbers m,M ∈ R such

that

m ≤ an ≤ M for all n ≥ 1 . (3)

Furthermore, a sequence {an}∞n=1 is said to be:

• increasing if

an < an+1 for all n ≥ 1 , (4)

• decreasing if

an > an+1 for all n ≥ 1 . (5)

• monotone if it is either increasing or decreasing.

We might expect that if a sequence {an} is both increasing and bounded above, then there is

a good chance that it will have a limit L. Its elements are bounded above by some number, i.e.,

an ≤ M . Furthermore, since the sequence is increasing, i.e., an < an+1, the elements of the sequence
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can’t oscillate.

Similarily, we might expect that if a sequence {an} is both decreasing and bounded below, then

there is a good chance that it would have a limit L.

It turns out that definite statements can be made about such monotone sequences. They are

included as special cases in the following important theorem:

Bounded Monotone Sequence Theorem: A bounded, monotone sequence is conver-

gent.

We’ll prove this theorem. But first we must provide some additional background about the real number

system R.

• First of all, a finite set of real numbers, {an}Nn=1 = {a1, a2, · · · , aN} always has a maximum

value and a minimum value, which implies that the set is bounded, i.e.,

m ≤ an ≤ M , 1 ≤ n ≤ N , (6)

where

m = min
1≤n≤N

an , M = max
1≤n≤N

an . (7)

• An infinite sequence {an}∞n=1 may be bounded, but it doesn’t have to have a maximum or

minimum value. For example, consider the sequence defined as follows,

an = 1− 1

n
=

n− 1

n
, n ≥ 1 , (8)

i.e., the set

S =

{

0,
1

2
,
2

3
,
3

4
, · · ·

}

. (9)

This sequence appears to be increasing. In fact, we can prove this quite easily. For n ≥ 1,

an+1 − an =
n

n+ 1
− n− 1

n

=
n2 − (n2 − 1)

n(n+ 1)

=
1

n(n+ 1)

> 0 , (10)
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which implies that

an+1 > an n ≥ 1 . (11)

This sequence has a minimum value a1 = 0. But it does not have a maximum value. Note,

however, that

an = 1− 1

n
=

n− 1

n
< 1 n ≥ 1 , (12)

which implies that the sequence is bounded above – in fact, it is bounded above by M = 1. But

there is no element an in the sequence that equals 1.

In fact, we can easily see that

an < M (13)

for any number M ≥ 1, e.g., M = 5. But M = 1 seems to be the smallest such upper bound.

In fact, M = 1 is the so-called least upper bound of the sequence since it satisfies the following

properties:

– For any c > M = 1, an < c for all n ≥ 1,

– For any c < M = 1, there exists an an such that an > c.

The least upper boundM = 1 may be viewed as the “best” upper bound of the sequence, i.e., the

one that is “closest” to the sequence, essentially “touching” it but not necessarily intersecting

it.

• The above is a particular case of a more general property of real numbers - referred to by Stewart

(Section 11.1, p. 702) as the Completeness Axiom for the set R of real numbers:

Let S ⊂ R be a nonempty subset of the real numbers that is bounded above, i.e., there

exists an M ∈ R such that x ≤ M for all x ∈ S, then S has a least upper bound b.

This means that if c < b, then there exists at least one element x ∈ S such that x > c

(which implies that c is not an upper bound).

Example: Consider the subset S = [0, 1). But it is bounded above since x < 1 for all x ∈ S.

But it does not have a maximum value. The least upper bound is b = 1 which is not an element

of the set.

Example: Now consider the subset S = [0, 1]. It is bounded above since x ≤ 1 for all x ∈ S. It

does have a maximum value, namely, the element x = 1. This maximum value is also the least
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upper bound.

The Completeness Axiom essentially states that there are no “gaps” or “holes” in the real number

line. If an infinite set does not have a maximum value, at least it has a least upper bound b which

is “arbitrarily close” to the sequence - we can’t find a gap between the sequence and the bound b.

The Completeness Axiom also applies to sets that are bounded below:

Let S ⊂ R be a nonempty subset of the real numbers that is bounded below, i.e., there

exists an m ∈ R such that x ≥ m for all x ∈ S, then S has a greatest lower bound

g. This means that if c > g, then there exists at least one element x ∈ S such that

x < c (which implies that c is not a lower bound).

We now prove (one part) of the Monotonic Sequence Theorem.

Proof: First of all, recall that one of the assumptions of the sequence {an} is that it is monotone.

Therefore, it is either increasing or decreasing. We’ll consider the case of an increasing sequence.

The other assumption on {an} is that it is bounded. From the Completeness Axiom, the set S =

{an | n ≥ 1} is bounded above and therefore has a least upper bound b. This implies that

an ≤ b for all n ≥ 1 . (14)

But it also implies that for any ǫ > 0 (with the idea of letting ǫ become arbitarily close to zero), b− ǫ

is not an upper bound for the set S, i.e., there exists an N ≥ 1 such that

b− ǫ < an ≤ b . (15)

But recall that the sequence {an} was assumed to be increasing, i.e., an < an+1, which implies that

b− ǫ < an ≤ b for all n > N . (16)

Now subtract b from all terms,

−ǫ < an − b ≤ 0 for all n > N . (17)

Since 0 ≤ ǫ, we can conclude that

−ǫ < an − b ≤ ǫ for all n > N . (18)
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But this statement is equivalent to the following statement,

|an − b| < ǫ for all n > N . (19)

Recalling that this holds true for any ǫ > 0, the above statement implies that

lim
n→∞

an = b . (20)

This, of course, implies that the sequence {an} is convergent.

In the case that the sequence {an} is decreasing, the proof is very similar in style to the above, but

using the greater lower bound property of the set S. We’ll leave this as an exercise for the reader.

Example: The sequence defined by a1 = 0 and

an+1 =
1

2
an +

1

2
, n ≥ 0 . (21)

We note that

a1 = 0 , a2 =
1

2
, a3 =

3

4
, a4 =

7

8
. (22)

It looks like the sequence {an} is increasing. In this particular case, it also looks as we might be able

to obtain an expression for the an in closed form, but we won’t bother. We’ll simply proceed the more

general route and be satisfied with proving that the an are increasing. There may be several ways to

prove this. Here, we’ll prove it by induction.

Clearly, the increasing property an < an+1 holds for n = 1. Let us now assume that it holds for

n = 1, 2, · · ·N , i.e.,

a1 < a2 < · · · < aN < aN+1 . (23)

We must show that it holds for n = N + 1, i.e.,

aN+1 < aN+2 . (24)

In the case n = N + 2, from the defining recursion relation,

aN+2 =
1

2
aN+1 +

1

2
. (25)
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But aN+1 > aN by assumption, so we have that

aN+2 >
1

2
aN +

1

2

= aN+1 . (26)

Since the result holds for n = N + 1, it holds for all n ≥ 1. Therefore the sequence is increasing.

We must now show that this increasing sequence is bounded above. Let’s see if we can show that

an < 10 for n ≥ 1 . (27)

Yes, we could probably obtain a “better” upper bound, e.g., an < 2, but it doesn’t really matter. The

key is to show that the sequence is bounded above. Once again, we’ll try to prove this by induction.

Clearly, a1 = 0 < 10, and even a2 =
1

2
< 10. Let us assume that

an < 10 for n = 1, 2, · · · , N , (28)

and try to show that

aN+1 < 10 . (29)

Once again, from the recursion relation, for n = N ,

aN+1 =
1

2
aN +

1

2
<

1

2
· 10 + 1

2
, (30)

where the final line comes from the fact that aN < 10 (by assumption). We therefore conclude that

aN+1 <
11

2
< 10 . (31)

The desired boundedness property therefore holds for all n ≥ 1.

In summary, we have established that the sequence {an} in this example is (i) increasing and (ii)

bounded above. Therefore, from the Bounded Monotone Sequence Theorem, we may conclude that it

is a convergent sequence, i.e.,

lim
n→∞

an = L (32)

exists and is finite. We may find this limit by using the original recursion relation in (21) and taking

limits of both sides,

lim
n→∞

an+1 = lim
n→∞

[

1

2
an +

1

2

]

=
1

2
lim
n→∞

an + lim
n→∞

1

2
(this is valid since the limits exist) . (33)
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This implies that

L =
1

2
L+

1

2
, (34)

which is easily solved:

L = 1 . (35)

Note: It is often possible to employ other “tricks” to establish properties such as increasing, decreasing

or bounded. For example, to show the increasing property, we may once again start with the induction

procedure, i.e., Eq. (23). Instead of going with Eq. (25), however, we simply investigate the difference,

aN+2 − aN+1 =

[

1

2
aN+1 +

1

2

]

−
[

1

2
aN +

1

2

]

=
1

2
[aN+1 − aN ]

> 0 , (36)

by assumption in the induction process. The result therefore holds for all n ≥ 1.

A final note regarding sequences generated by the iteration procedure xn+1 = f(xn)

In the past two lectures, we have examined a number of sequences which are obtained by recursion

or iteration. The iteration sequence studied in the previous section is an example:

a1 = 0 , an+1 =
1

2
an +

1

2
. (37)

In general, such procedures may be represented by the iteration procedure,

xn+1 = f(xn) , n ≥ 1 , (38)

where f : R → R is a specified function. Once a seed point a1 is specified, a unique sequence {xn}∞n=1

will result. For the sequence in (37),

f(x) =
1

2
x+

1

2
. (39)

A variety of behaviours can be exhibited by iteration sequences of functions, ranging from simple

convergence to a limit point, convergence to “two-cycles,” and n-cycles in general, as well as “chaotic

behaviour”. These behaviours are certainly of interest mathematically but they are also of interest,

and quite useful, in applications to the sciences and engineering.

The mathematical study of iteration sequences and their behaviour can be classified under the

general title of dynamical systems theory. But differential equations (DEs) can also be classified
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under this title. The difference between DEs and iteration processes is that the former (DEs) repre-

sent a continuous evolution, e.g., the position x(t) of a point particle under the action of a force,

whereas the latter (iteration) may be viewed as a discrete evolution which takes place at discrete

time steps t = n, n = 1, 2, · · · .

Note: The material presented in the next two sections is optional and only for purposes

of information. You are NOT responsible for any of this material for the final exam in

this course.
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APPENDIX: The Newton-Raphson method as a dynamical system

In 1A Calculus, you most probably studied the Newton or Newton-Raphson method, a quite

famous iteration scheme which was originally designed to provide estimates of (simple) zeros of func-

tions. In what follows, we assume that f : R → R is a C1 function, i.e., f ′(x) is a continuous function

of x on some domain. Now assume that f has a zero at x = x̄, i.e., f(x̄) = 0. Furthermore assume

that this zero is simple, i.e., f ′(x̄) 6= 0. The Newton function associated with f is defined as

N(x) = x− f(x)

f ′(x)
. (40)

Note that

f(x̄) = 0 =⇒ N(x̄) = x̄ . (41)

The zero, x̄, is a fixed point of the Newton function N(x). It is well known that if we start with a

seed point x0 sufficiently close to x̄, then the iteration sequence defined by

xn+1 = N(xn) (42)

converges to x̄, i.e.,

lim
n→∞

xn = x̄ . (43)

There are some other interesting properties of the iterates in terms of how their distances to x̄ go to

zero, but that will be the subject of a future discussion.

224



APPENDIX: Graphical methods of analyzing the iteration scheme xn+1 = f(xn)

We wish to represent the iteration process defined by

xn+1 = f(xn), (44)

where f : R → R, graphically. We begin with a “seed” x0 ∈ R and insert it into the “f machine”. The

output x1 = f(x0) is then reinserted into the “f machine” to produce x2 = f(x1), etc. How do we do

this graphically? First start with a plot of the graph of f(x) along with the line y = x, as shown in the

figure on the next page. Now pick a starting point x0 on the x-axis. Getting x1 = f(x0) is easy: You

simply find the point (x0, f(x0)) that has on the graph of f(x) above (or below) the point x = x0. In

other words, travel upward (or downward) from (x0, 0) to (x0, f(x0)). We now have x1 = f(x0). How

do we input x1 into the “f machine” to find x2 = f(x1)? First, we have to find where x1 lies on the

x-axis. We do this by travelling from the point (x0, f(x0)) horizontally to the line y = x: the point of

intersection will be (f(x0), f(x0)) = (x1, x1). We are now sitting directly above (or below) the point

(x1, 0) on the x-axis, which is patiently waiting to be input into f(x) to produce x2 = f(x1). We can

travel from (x1, x1) to x1, 0) and then back up (or down) to (x1, f(x1)) = (x1, x2). From here, we once

again travel to the line y = x, intersecting it at (x2, x2). From here, we travel to the curve y = f(x)

to intersect it at (x2, x3), etc.. The procedure is illustrated below.

x2x1

y = x

y = f(x)

x0

x1

x2

x3

x

y

start here

When you have performed this procedure a few times, you will see that including all the lines

from intersection points (xi, xi) on the line y = x and intersection points (xi, xi+1) on y = f(x) to

the x- and y-axis is unnecessary. In fact, these lines clutter up the figure. We have removed them to

produce the figure below, in which the iteration process is presented in a much clearer way.
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x1x2

y = x

y = f(x)

x0 x

y

start here

x̄

For rather obvious reasons, figures such as this one are called “cobweb diagrams”. It appears as

if the iterates x0, x1, x2, x3 are jumping back and forth, yet “zeroing in” on the point (x̄, x̄) at which

the graph of f intersects the line y = x. Such a point of intersection must be a fixed point of f since

it implies that f(x̄) = x̄. Of course, not all fixed points are attractive as the one in this diagram: The

graphical procedure outlined above will give us some insight into what makes a fixed point attractive

or repulsive.

We now examine some simple dynamical systems using this graphical approach.

Example 1: xn+1 = axn, 0 < a < 1. For x0 > 1 or x0 < 1, the graphical method shows the

monotonic approach of the xn = anx0 toward the fixed point x = 0:

x

y
y = x

y = 1
2
x

x0

x0

Example 2: xn+1 = axn, −1 < a < 0. The iterates xn oscillate about x = 0, xn = (−1)n|c|nx0,
with xn → 0 as n → ∞:
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x

y
y = x

y = −

1
2
x

x0

Example 3: xn+1 = axn, a > 1. Here, xn = cnx0. The iterates travel away from the fixed point 0:

x

y
y = x

y = 2x

x0

x0

Example 4: xn+1 = axn + b, 0 < a < 1, d > 0

1

1 2

2 y = x

y = 1
2x+ 1

2

x0 x0

In this example, the two straight lines, y = x and y = cx + d, can intersect at only one point, the

fixed point of f(x) = cx + d, which is x̄ = d
1−c

. Since |c| < 1, this fixed point is attractive: For any
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x0 ∈ R, xn → x̄ as n → ∞. Note that this picture looks like that of Example 1, with the fixed point

translated from x = 0 to x = d
1−c

. The reader is once again encourage to examine the iteration of

f(x) = cx+ d for the cases i) −1 < c < 0, ii) c = −1 and iii) c < −1.

Finally, we examine a couple of simple nonlinear iteration processes using the graphical method

described above. The graphs of nonlinear functions f(x) are not necessarily straight lines – in other

words, they can “bend”. As such f(x) can have more than one fixed point. Each fixed point x̄i can

behave differently, i.e. one repulsive, the other attractive, so that the dynamics of the iteration process

xn+1 = f(xn) can be quite complicated.

Example 5: f(x) = x2, i.e. xn+1 = x2n.
y

x

y = x

y = x2

0 1 2−1−2

1

2

3

4

Clearly, the fixed points of f(x) are x̄1 = 0 and x̄2 = 1. Thus, if x0 = 0, then xn = 0. If x0 = 1, then

xn = 1. If we begin with a point x0 ∈ (0, 1), then x1 = x20 < x0. Likewise x0 > x1 > x2, . . . , xn >

xn+1, . . . and xn → 0 as n → ∞. (In other words, if we keep squaring a number starting in (0,1), we

approach zero.)

If x0 ∈ (−1, 0), then x1 = x20 ∈ (0, 1) and the above process is repeated, i.e. xn → 0 as n → ∞. If

x0 = 1, then xn = 1. for n ≥ 1. If x0 > 1, then x1 = x20 > x0 and xn+1 > xn, so that xn → +∞ as

n → ∞. If x0 < −1, then x1 = x20 > 1 and xn → +∞ as n → ∞.

A few other observations:

1. For all points x0 ∈ (−1, 1), xn → 0. We say that x̄1 = 0 is an attractive fixed point and that the

interval I = (−1, 1) is its basin of attraction.
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2. The fixed point x̄2 = 1 is repulsive since all points in a neighbourhood of x̄2, J = (1 − ǫ, 1 + ǫ)

leave J after a finite number of iterations. (Those to the left of 1 go to 0; those to the right of

1 go to +∞.)

3. The point x = −1 is mapped to the fixed point x̄2 = 1, and is called a preperiodic point, since

it remains at x̄2 = 1 in future iterations.

4. For all other initial conditions, x0 ∈ (−∞,−1) ∪ (1,∞) = R − [0, 1], the iterates xn → +∞ as

n → ∞.

Example 6: f(x) = 16

5
x(1− x), x ∈ [0, 1]

x

y

y = x

y = 16
5
x(1− x)

0 1x0 x0

f has two fixed points: x̄1 = 0 and x̄2 = 11

16
(Exercise). Clearly, if x0 = 0, then xn = 0. If x0 is near

0, then the first few iterates x1, x2 are observed to travel away from 0 toward fixed point x̄2. The

points (xn, f(xn)) travel “up the hump” until they reach roughly the height x̄2, whereupon they are

directed toward the right side of the “hump”. Graphical methods are insufficient to account for the

long term behaviour of the xn. If we magnify the graph of f(x) near its fixed point (x̄2, x̄2) =
(

11

16
, 11
16

)

and examine the “cobweb nature” of the iteration procedure xn+1 = f(xn), we find that a point x0

near x̄2 =
11

16
is sent by the function f to a point x1 = f(x0) on the other side of x̄2 =

11

16
and farther

away from it, i.e. |x1− x̄2| > |x0− x̄2|. In other words, x̄2 =
11

16
is a repulsive fixed point: If we choose

x0 = x̄2, then xn = x̄2, i.e. we remain at x̄2. However, if we choose an x0 “ǫ-close” to x̄2, with ǫ > 0,

the iterates xn travel away from x̄2, no matter how small an ǫ is chosen.

So what happens to the iterates xn? Numerically, we find that they approach the two-cycle

(p1, p2) ∼= (0.799, 0.513) as n → ∞.
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This is not the end of the story for this ex-

ample. Even though the fixed point x̄2 is un-

stable, there is still an infinity of points that

get mapped to x̄2 after a finite number of it-

erations and then stay at x̄2. To determine

these points, we simply iterate “backwards”,

i.e. find graphically the point y1 such that

f(y1) = x̄2, then find graphically the point y2

such that f(y2) = y1 so that f2(y2) = x̄2, etc.

In this way, we find an infinite set of prepe-

riodic points yn, n = 1, 2, 3, . . . such that

fn(yn) = x̄2. Note that yn → 0 as n → ∞.

x

y

y = x

y = 16
5
x(1− x)

0 x̄2y1y2y3

In other words, these points can be found at arbitrarily small distances from the (repulsive) fixed

point x̄1 = 0.

But that’s not all! There’s an infinity of points on the other side of the hump near x = 1 that

also get mapped to x̄2 after a finite number of

iterations. We can find them by going “right”

instead of left in our “backwards” iteration

procedure pictured above. In the figure below,

we have found graphically the point z1 near

n = 1 such that f(z1) = y1 so that f2(z1) =

x̄2 as well as the point z2 such that f(z2) = y2

so that f3(z2) = x̄2. In this way, we find

another infinite set of preperiodic points zn,

n = 1, 2, 3, . . . such that fn+1(zn) = x̄2. Note

also that these points zn → 1 as n → ∞.

x

y

y = x

y = 16
5
x(1− x)

0 x̄2 z1 z2
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APPENDIX: Material presented in Monday, February 27, 2017 tu-

torial

We are back to material that is most definitely a part of the course. The material presented in this

tutorial is quite relevant to some problems in Assignment No. 6.

An “N(ǫ) problem”

Consider the sequence

an = 2− 1

n2
, n 6= 1 . (45)

We can easily see that this sequence has a limit,

lim
n→∞

an = lim
n→∞

(

2− 1

n2

)

= lim
n→∞

2− lim
n→∞

1

n2

= 2− 0

= 2 . (46)

Let’s now prove this result, i.e.,

lim
n→∞

an = 2 , (47)

using the ǫ-N(ǫ) definition of the limit of a sequence. The above statement means that for any ǫ > 0,

there exists an N(ǫ) > 0 such that

|an − 2| < ǫ for all n > N(ǫ) . (48)

Our goal is to find N(ǫ) as a function of ǫ. From the definition of the sequence in Eq. (45),

an − 2 = − 1

n2
, (49)

which implies that

|an − 2| = 1

n2
. (50)

From Eq. (48), given an ǫ > 0, we must find the n values for which

1

n2
< ǫ . (51)
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We can multiply both sides of this inequality by n2 and then divide both sides by ǫ > 0 to yield the

inequality,

n2 >
1

ǫ
=⇒ n >

1√
ǫ
. (52)

Technically speaking, the ratio
1√
ǫ
may not be an integer. But we can take its integer part and then

add 1 (or any number greater than 1), i.e., let

N(ǫ) = int

[

1√
ǫ

]

+ 1 , (53)

where “int” denotes “integer part of”. (For example, int(5.127) = 5.) We have therefore found the

required N(ǫ), thus proving that the limit exists.

A “monotone sequence problem”

This is Question 81 of Stewart (Eighth Edition), p. 705:

Show that the sequence,

a1 = 1 , an+1 = 3− 1

an
, (54)

is increasing and an < 3. Deduce that the sequence {an} is convergent and find its limit.

Step 1: Show that the sequence is increasing. We see that

a1 = 1 , a2 = 2 , a3 =
5

2
. (55)

It seems as if the an are increasing. We’ll prove it by induction. Assume that an < an+1 is true for

n = 1, 2, · · · , N . We must now show that it is true for n = N + 1, i.e., that aN+1 < aN+2. Let’s

examine aN+2:

aN+2 = 3− 1

aN+1

. (56)

But aN+1 > aN > · · · > a1 > 0 (by assumption). Therefore, taking reciprocals,

1

aN+1

<
1

aN
(note that this is possible because the an > 0) . (57)

Multiply both sides by -1, which flips the inequality, i.e.,

− 1

aN+1

> − 1

aN
. (58)
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Now add 3 to each side,

3− 1

aN+1

> 3− 1

aN
. (59)

But by definition of the sequence, this implies that

aN+2 > aN+1 . (60)

The increasing property an < an+1 therefore holds for all n ≥ 1.

Here is an alternate proof by induction. Once again, we assume that an < an+1 for n = 1, 2, · · · , N
and attempt to show that it is true for n = N +1, i.e., that aN+1 < aN+2. We examine the difference,

aN+2 − aN+1 =

(

3− 1

aN+1

)

−
(

3− 1

aN

)

= − 1

aN+1

+
1

aN

= −aN − aN+1

aNaN+1

. (61)

The denominator is positive since 0 < a1 < a2 · · · aN < aN+1 (by earlier assumption). The numerator

is negative since aN < aN+1 (also by earlier assumption). Therefore,

aN+2 − aN+1 > 0 =⇒ aN+1 < aN+2 , (62)

the desired result. By induction, an < an+1 for all n ≥ 1. The sequence is therefore increasing.

Step 2: Show that an < 3 for all n ≥ 1. Once again, we’ll prove the desired result by induction.

We see that a1 < 3 and a2 < 3. Now assume that an < 3 for n = 1, 2, · · ·N . We must show that

aN+1 < 3. First of all,

aN+1 = 3− 1

aN
. (63)

But aN < 3, which implies that
1

aN
>

1

3
. (64)

This, in turn, implies that

− 1

aN
< −1

3
. (65)

Now add 3 to both sides,

3− 1

aN
< 3− 1

3
< 3 . (66)
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But the LHS of this inequality is aN+1 so we have arrived at the desired result,

aN+1 < 3 . (67)

Therefore, the inequality an < 3 is true for all n ≥ 1.

From Step 1 and Step 2, we have shown that the sequence {an} is (i) increasing and (ii) bounded

above. We may now use the Monotone Bounded Sequence Theorem to conclude that this sequence is

convergent, i.e., it has a limit L. We may find L from the recursion relation defining the sequence,

i.e.,

lim
n→∞

an+1 = lim
n→∞

(

3− 1

an

)

= lim
n→∞

3− lim
n→∞

1

an

= 3− 1

limn→∞ an
, (68)

This implies that the limit L satisfies the equation,

L = 3− 1

L
. (69)

Multiplication by L and rearranging yields the following quadratic equation in L,

L2 − 3L+ 1 = 0 . (70)

The roots of this quadratic are

L1 =
3

2
+

1

2

√
5 ≈ 2.618 , L2 =

3

2
− 1

2

√
5 ≈ 0.382 . (71)

Recalling that a1 = 1 and that the sequence {an} is increasing, the second root L2 is not feasible since

it is less than a1. The root L1 is therefore the limit of the sequence.
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Lecture 22

Series (cont’d)

Introduction

Relevant section of Stewart: 11.2

We now begin a very important section of the course – the study of infinite series or, simply,

series. Given an infinite sequence of real numbers {an}∞n=1, we now consider the following summation,

a1 + a2 + a3 + · · · , (72)

which is compactly expressed in terms of Σ-notation as follows,

∞
∑

n=1

an or simply
∑

an . (73)

This lecture followed quite closely the presentation found in Section 11.2 of Stewart. As such, it will

not be reproduced in its entirely. Only some main points are given below.

First of all, the infinite summation in (72) must be understood in the same way that we considered

improper integrals defined over an infinite domain of integration, e.g., [0,∞), namely, in terms of limits

of appropriate truncations. In the case of series, we define the partial sums associated with the

series in (72) as follows:

s1 = a1

s2 = a1 + a2

... (74)

and, in general,

sn = a1 + a2 + · · · an =

n
∑

k=1

ak , n ≥ 1 . (75)

These partial sums form a new sequence, {sn}∞n=1. Note that

sn = sn−1 + an , n ≥ 2 . (76)

Definition: If the sequence of partial sums {sn} is convergent and

lim
n→∞

sn = s , (77)
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exists and is a finite real number, then the series
∑

an is convergent (or the series converges)

and the limit s is the sum of the series. We then write that

∞
∑

n=1

an = s . (78)

If the sequence {sn} is divergent, then the series
∑

an is divergent.

Example 1: The series,
1

2
+

1

4
+

1

8
+ · · · . (79)

Here, the elements of the series are given by

an =
1

2n
, n ≥ 1 . (80)

We examine the first few partial sums of the series:

s1 =
1

2

s2 =
1

2
+

1

4
=

3

4

s3 =
1

2
+

1

4
+

1

8
=

7

8

s4 = s3 +
1

16
=

15

16
. (81)

The reader may well see a pattern here, i.e.,

sn =
2n − 1

2n
, n ≥ 1 . (82)

This result can be proved by induction, but we skip the proof. We now examine whether the limit of

this sequence exists:

lim
n→∞

sn = lim
n→∞

2n − 1

2n

= lim
n→∞

[

1− 1

2n

]

= 1 . (83)

Therefore the series converges and its sum is 1.

Example 2: The series,

1− 1 + 1− 1 + · · · . (84)

236



Here, the elements of the series are given by

an = (−1)n−1 , n ≥ 1 . (85)

The first few partial sums of the series are

s1 = 1

s2 = 1− 1 = 0

s3 = 1− 1 + 1 = 1

s4 = 1− 1 + 1− 1 = 0 .

(86)

The pattern is straightforward:

s2n−1 = 1 s2n = 0 , n ≥ 1 . (87)

The sequence of partial sums oscillates between 1 and 0. Clearly,

lim
n→∞

s2n−1 = 1 and lim
n→∞

s2n = 0 . (88)

Since the two limits are unequal, lim
n→∞

sn does not exist. Therefore, the series is divergent.

In class, we proved that the famous geometric series,

a+ ar + ar2 + · · · =
∑

n=1

arn−1 a 6= 0 , (89)

is convergent if |r| < 1, in which case its sum is

∞
∑

n=1

arn−1 =
a

1− r
. (90)

If |r| ≥ 1, the geometric series is divergent.

A very trivial application of this result is to the series,

∞
∑

n=0

xn = 1 + x+ x2 + · · · . (91)

This is a geometric series with a = 1 and r = x. As such, it is convergent for |x| < 1 in which case its

sum is
∞
∑

n=0

xn =
1

1− x
, − 1 < x < 1 . (92)
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As mentioned in the lecture, when we see the variable “x”, we immediately start to think about

functions. In fact, the RHS of the above equation is a function of x, namely,

f(x) =
1

1− x
. (93)

Later, we’ll show that the series on the LHS is the Taylor series of f(x) at x = 0.

In the lecture, we also proved that the famous harmonic series,

∑

n=1

1

n
= 1 +

1

2
+

1

3
+ · · · , (94)

is divergent.

We then proved the following important result:

Theorem: If the series

∞
∑

n=1

an is convergent, then

lim
n→∞

an = 0 . (95)

This result “makes sense”: In order for the sequence of partial sums {sn} to converge, the contribu-

tions an that you add to each partial sum sn to get the next one, sn+1 should go to zero.

That being said, it is not true that if lim
n→∞

an = 0, then the series
∞
∑

n=1

an converges. The

harmonic series is an example of a series for which an → 0 but the series is divergent. One should

always remember this example.

The Theorem presented above is the basis for the following important test:

Divergence test: If lim
n→∞

an does not exist or if lim
n→infty

an 6= 0, then the series

∞
∑

n=1

an is divergent.
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Lecture 23

Series (cont’d)

At the start of the lecture, we proved one of the three results given in Stewart’s textbook as Theorem

8 of Section 11.2 on Page 714:

Theorem: If
∑

an and
∑

bn are convergent series, then so are the series
∑

can (where c is a

constant),
∑

(an + bn) and (an − cn) and their sums are, respectively,

∞
∑

n=1

can = c

∞
∑

n=1

an , (96)

∞
∑

n=1

(an + bn) =

∞
∑

n=1

an +

∞
∑

n=1

bn , (97)

and
∞
∑

n=1

(an − bn) =

∞
∑

n=1

an −
∞
∑

n=1

bn , (98)

We’ll prove the middle result. Let sn and tn, n ≥ 1, denote the partial sums of the two series, i.e.,

sn =
n
∑

k=1

an , tn =
n
∑

k=1

bn . (99)

Then by hypothesis,

lim
n→∞

sn = s , lim
n→∞

tn = t , (100)

where s and t denote the sums of the two respective series. Now let un denote the partial sums of the

combined series, i.e.,

un =

n
∑

k=1

(ak + bk) , n ≥ 1 . (101)

We need to show that lim
n→∞

un exists and is finite. This is rather easy. From the above equation, since

we are working with a finite number of terms,

un = sn + tn , n ≥ 1 . (102)

Taking limits,

lim
n→∞

un = lim
n→∞

(sn + tn)

= lim
n→∞

sn + lim
n→∞

tn

= s+ t . (103)

The proof of the second result is complete.
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Integral test for convergence/divergence of positive series

Relevant section of Stewart: 11.3

The lecture followed the discussion of Stewart rather closely and won’t be reproduced in detail.

Here, we summarize the important parts.

Example 1: We start, as does Stewart, with the series

∞
∑

n=1

1

n2
. (104)

The series coefficients an are defined as

an = f(n) where f(x) =
1

x2
> 0 for x ≥ 1 . (105)

From Figure 1 in Stewart, Page 719, which shows the graph of f(x) along with boxes of area a2, a3,

etc., that lie under the graph, we note that the partial sum sn of the series is bounded above as follows,

sn = 1 +
1

4
+

1

9
· · ·+ 1

n2

< 1 +

∫ n

1

1

x2
dx

< 1 + lim
n→∞

∫ n

1

1

x2
dx

= 1 +

∫ ∞

1

1

x2
dx

= 1 + 1

= 2 . (106)

This result implies that the sequence of partial sums {sn} is bounded above. Moreover, this sequence

is an increasing sequence:

sn+1 = sn + an =⇒ sn+1 − sn = an > 0 , (107)

which implies that

sn < sn+1 n ≥ 1 . (108)

From the Bounded Monotone Sequence Theorem, the sequence {sn} is convergent, i.e., the limit

lim
n→∞

sn = s (109)
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exists and is finite. This implies that the series in (104) converges.

Example 2: We then considered the series,

∑

n=1

1

n
, (110)

i.e., the harmonic series studied in the previous lecture. We know that this series diverges, but let’s

adapt our integral method to treat this problem. Analogous to what is presented in Figure 2 of

Stewart, Page 720, for the series
∑ 1√

n
, it is easy to show that the partial sums of the harmonic

series are bounded below as follows,

sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

>

∫ n+1

1

1

x
dx

= ln(n+ 1)− ln(1)

= ln(n+ 1) . (111)

Clearly, as n → ∞, sn → ∞, which implies that the series diverges.

The methods in which the above examples were examined essentially comprise the proofs of the fol-

lowing important result:

The Integral Test (for series with positive terms): Suppose that f(x) is a continuous, positive

and decreasing function for x ≥ 1 and let an = f(n). Then:

1. If

∫ ∞

1

f(x) dx is convergent, then the series

∞
∑

n=1

an is convergent.

2. If

∫ ∞

1

f(x) dx is divergent, then the series

∞
∑

n=1

an is divergent.

These two results may be combined with the following compact statement:

The series
∑

n=1

an is convergent if and only if the improper integral

∫ ∞

1

f(x) dx is conver-

gent.

Example: The series

∞
∑

n=1

1

n5 + 1
. Here, an = f(n) where f(x) =

1

x5 + 1
. Clearly, f(x) is continuous,

positive and decreasing for x ≥ 1. We simply need to determine whether or not the improper integral
∫ ∞

1

1

x5 + 1
dx (112)
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is convergent. It is not necessary to evaluate the integral, but simply to determine whether or not

it is convergent. This makes the task much easier. We know that

f(x) ≤ g(x) =
1

x5
, x ≥ 1 , (113)

and that the improper integral
∫ ∞

1

g(x) dx =

∫ ∞

1

1

x5
dx (114)

converges. (It is an integral of the form Ip =

∫ ∞

1

1

xp
dx with p > 1.) Therefore, the integral in (112)

converges, implying that the series converges.

Convergence of
1

np
series: We can use the integral test to determine the p values for which the

following series,
∞
∑

n=1

1

np
, (115)

converges. Here, an = f(n), where f(x) =
1

xp
. First of all, for p ≤ 0, it is not the case that

limn→∞ an = 0. By the Divergence Test, the series will therefore not converge for p ≤ 0. We therefore

need only consider the cases p ≥ 0. The function f(x) is continuous, positive and decreasing for x ≥ 1

for p > 0. Earlier in the course, we showed that the improper integral,

Ip =

∫ ∞

1

1

xp
dx , (116)

converges for p > 1 and diverges for p ≤ 1. From the Integral Test, we conclude that the series in

(115) converges for p > 1 and diverges for p ≤ 1.

Remarks:

• As in the case of improper integrals, the above result shows that the series coefficients an must

decay sufficiently rapidly as n → ∞, i.e., faster than
1

n
, for the series to converge.

• It is the “infinite tail” of a series which determines whether or not it is convergent. As such, the

condition that f(x) be decreasing for x ≥ 1 may be replaced by x ≥ N . Likewise, the improper

integrals starting at x = 1 in the Integral Test may be replaced by the integrals

∫ ∞

N

f(x) dx . (117)
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Estimating the sum of a series with positive terms

Let
∑

an be a convergent series with positive terms, i.e., an > 0, n ≥ 1. Furthermore, assume that

f(n) = an , n ≥ 1 , (118)

and that f(x) is decreasing for x ≥ 1.¿ We can use integrals of f(x) to estimate how well the partial

sums sn of this series are approximating the true sum s.

Recall that the partial sums are defined as

sn = a1 + a2 + · · ·+ an , n ≥ 1 , (119)

and the sum of the series is

s = lim
n→∞

sn = a1 + a2 + · · · . (120)

Now define the remainder Rn associated with the nth partial sum sn as follows,

Rn = s− sn , n ≥ 1 . (121)

It follows that

Rn = an+1 + an+2 + · · · , (122)

i.e., Rn is the “infinite tail” of the series which is dropped when we compute the partial sum sn. From

(121),

lim
n→∞

Rn = lim
n→∞

(s− sn)

= s− lim
n→∞

sn

= s− s

= 0 . (123)

We can rewrite (121) as

s = sn +Rn , (124)

and consider Rn to be the error in the approximation

s ≈ sn . (125)
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Of course, this error goes to zero as n → ∞. But can we estimate the error Rn for a given partial sum

sn, especially if we do not know the exact value of the sum s of the series?

The answer is “Yes.” From Figure 3 on Page 723 of Stewart, using once again the integral of f(x), it

should be straightforward to see that

Rn = an+1 + an+2 + · · · ≤
∫ ∞

n

f(x) dx . (126)

Similarily, from Figure 4 on Page 723 of Stewart,

Rn = an+1 + an+2 + · · · ≥
∫ ∞

n+1

f(x) dx . (127)

We can combine these two results to write
∫ ∞

n+1

f(x) dx ≤ Rn ≤
∫ ∞

n

f(x) dx . (128)

We can also use these results, in particular, the first result, in order to determine how many terms of

a series must be used, i.e., how large n must be, so that the accuracy in approximating the true sum

s with the partial sum sn is less than a desired amount.

Example: Consider the series

∞
∑

n=1

1

n2
, which was shown earlier in this lecture to converge. From our

previous discussion, the remainder Rn associated with the partial sum,

sn = 1 +
1

4
+ · · ·+ 1

n2
, (129)

is bounded above as follows,

Rn ≤
∫ ∞

n

1

x2
dx

= lim
b→∞

∫ b

n

1

x2
dx

= lim
b→∞

[

1

n
− 1

b

]

=
1

n
. (130)

Clearly, Rn → 0 as n → ∞ but perhaps not very quickly.

To illustrate, we compute the partial sum s10 to be

s10 ≈ 1.54977 . . . . (131)
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The error Rn associated with this approximation is then bounded as

R10 ≤
1

10
. (132)

This means that

s− s10 = R10 ≤
1

10
, (133)

which means that

s ≤ s10 +
1

10
= 1.64977 . . . . (134)

The actual value of the sum s is, to five decimal digits,

s = 1.644934 · · · . (135)

We see that the actual error is

s− s10 ≈ 0.095 , (136)

which is close to the estimated error.

The partial sum s100 is computed to be

s100 ≈ 1.63498 · · · . (137)

The error Rn associated with this approximation is then bounded as

R100 ≤ 1

100
. (138)

The actual error is

s− s100 ≈ 0.00995 , (139)

which is very close to the estimated error.

One can still do better in obtaining estimates of the sum s from the partial sums, and we’ll discuss

this in the next lecture.
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