
Lecture 18

Applications of differential equations (cont’d)

Electric circuits (cont’d)

Special case: LR circuit

Continuing with our discussion of simple electric circuits from the previous lecture, we now consider

a special case in which the electric circuit is composed of a battery/generator, an inductor L and a

resistor R, as sketched schematically below.

L

R
I

E S

As mentioned in the previous lecture, Kirchhoff’s Law for this circuit will be

L
dI

dt
+RI = E(t) . (1)

This is a linear first-order DE in the current I(t). We shall consider two particular cases for this circuit:

Case No. 1: A constant voltage, i.e.,

E(t) = E0 , constant. (2)

This corresponds to a direct-current (DC) power source. The DE in Eq. (1) then becomes

L
dI

dt
+RI = E0 . (3)

This DE is both (i) separable and (ii) first-order linear. We’ll solve it as a first-order linear DE. First,

write it in standard form,
dI

dt
+

R

L
I =

E0

L
, . (4)

But before solving this DE, we’ll perform a little “qualitative analysis” in order to deduce the behaviour

of solutions. We’ll see that, once again, a good deal of information will be extracted. First, we’ll

194



rearrange the above DE as follows,
dI

dt
=

R

L

(

E0

R
− I

)

. (5)

As we would have done if solving this DE as a separable DE, we’ll check if there are any constant

solutions I(t) = I for which the RHS is zero. Remember that this is the spirit of “qualitative analysis.”

Indeed, the constant function,

I(t) = I0 =
E0

R
, (6)

is a solution of the DE: The RHS of Eq. (5) is zero and the LHS is a time derivative of a constant

function, which is zero. This solution is also known as an equilibrium solution of the DE. (In fact,

it is the only equilibrium solution.) In fact, this solution is in accordance with Ohm’s Law: If we

rewrite the above equation as

E0 = I0R , (7)

we see that the current I0 is determined from the resistance R of the resistor and the voltage E0. It

is as if the inductor L is not present! But recall that the inductor is sensitive to changes in current.

Continuing our qualitative analysis of Eq. (5), we note the following:

1. If, at any time t ≥ 0, I(t) <
E0

R
, then the RHS is positive, which implies the

dI

dt
> 0 which, in

turn, implies that I(t) is increasing. As it increases toward the value
E0

R
, the RHS goes to zero,

which implies that I(t) is asymptotically approaching the constant value
E0

R
from below. (You

saw this behaviour in the DE for the falling body in the presence of air resistance. The velocity

v(t) of the body was increasing toward the terminal velocity.)

2. If, at any time t ≥ 0, I(t) >
E0

R
, then the RHS is negative, which implies the

dI

dt
< 0 which, in

turn, implies that I(t) is decreasing. As it decreases toward the value
E0

R
, the RHS goes to zero,

which implies that I(t) is asymptotically approaching the constant value
E0

R
from above. (You

saw this behaviour in the DE for the falling body in the presence of air resistance. The velocity

v(t) of the body was increasing toward the terminal velocity.)

From this analysis, we can conclude that the solutions to the DE in Eq. (3) behave qualitatively as

sketched below.

We’ll now confirm these conclusions by solving the linear first-order DE in (4) exactly. The function

P (t) =
R

L
so the integrating factor of this DE is e

R
L
t. (We won’t refer to this integrating factor as I(t)
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t

y

0

E0

R

y = I(t)

since I(t) already denotes the current. Now multiply both sides of the DE by the integrating factor,

e
R
L
t dI

dt
+

R

L
e

R
L
tI =

E0

L
e

R
L
t . (8)

As should be the case, the LHS is an exact derivative,

d

dt

[

e
R
L
tI
]

=
E0

L
e

R
L
t . (9)

Now antidifferentiate w.r.t. t,

e
R
L
tI =

E0

L

∫

e
R
L
t dt

=
E0

R
e

R
L
t + C , (10)

so that we have

I(t) =
E0

R
+ Ce−

R
L
t . (11)

If we impose the initial condition I(0) = I0,

I0 =
E0

R
+ C =⇒ C = I0 −

E0

R
, (12)

so that the solutions become

I(t) =
E0

R
+

[

I0 −
E0

R

]

e−
R
L
t . (13)

We can see that for all solutions, i.e., all initial conditions I0 ≥ 0,

lim
t→∞

I(t) =
E0

R
. (14)

This is in agreement with the qualitative analysis performed earlier. The constant solution,

I(t) =
E0

R
, (15)

which we previously called the equilibrium solution of the DE, is also the steady-state solution

of the LR circuit – all solutions I(t) approach it as t → ∞.

196



Case No. 2: An oscillatory and periodic EMF, i.e.,

E(t) = E0 cosωt , (16)

where ω ≥ 0 is the angular frequency (radians/unit time) of the oscillation. This corresponds to an

alternating current source with amplitude E0.

Note: In class, we considered the case E(t) = E0 sinωt. The solution will not be too different – at

least qualitatively – but they will differ slightly in terms of phase.

The first-order linear DE – in standard form – corresponding to this AC source will be

dI

dt
+

R

L
I =

E0

L
cosωt . (17)

Note that this DE is no longer separable – it will have to be solved as a linear first-order DE. Fur-

thermore, because of the presence of the nonconstant cosωt term on the RHS, there are no constant

(equilibrium) solutions.

The integrating factor of this DE will once again be e
R
L
t. Multiplying the DE by this integrating

factor, etc. will yield the expression,

I(t) =
E0

L

(

e−
R
L
t

)

∫

e
R
L
t cosωt dt+ Ce−

R
L
t . (18)

We’ll use the following result from the table of integrals (yes, you can use them now if you wish -

otherwise the result can be derived with a little bit of work using integration by parts):

∫

eax cos bx dx =
eax

a2 + b2
[a cos bx+ b sin bx)] . (19)

The solution is then

I(t) =
E0

L

1
(

R

L

)2
+ ω2

[

R

L
cosωt+ ω sinωt

]

+Ce−
R
L
t . (20)

We’ll modify the first part of the solution slightly to give

I(t) =
E0

R2 + (Lω)2
[R cosωt+ Lω sinωt] + Ce−

R
L
t . (21)

If we impose the initial condition I(0) = I0, then

I0 =
E0R

R2 + (Lω)2
+ C , (22)
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so that

C = I0 −
E0R

R2 + (Lω)2
, (23)

in which case the solution becomes,

I(t) =
E0

R2 + (Lω)2
[R cosωt+ Lω sinωt] +

[

I0 −
E0R

R2 + (Lω)2

]

e−
R
L
t . (24)

Perhaps the most important aspect of this solution, which could also have been deduced from the

general solution in (21) is that as t → ∞, the exponential e−
R
L
t → 0. As such, all solutions I(t)

approach the following function in the limit t → ∞:

Is(t) =
E0

R2 + (Lω)2
[R cosωt+ Lω sinωt] . (25)

This is certainly not a constant solution but rather an oscillatory solution with frequency ω hence

period T =
2π

ω
– this follows from the cosωt and sinωt functions, both of which have period T . The

subscript “s” in “Is(t)” is used to identify this function as the steady state solution to the DE

in (17). It is essentially the long time response of the LR circuit to the EMF “forcing” function

E(t) = E0 cosωt. (You may have seen the idea of a steady state response to forcing in the case of

the harmonic oscillator – in which a mass which is connected to a “Hookean” spring (restorative force

Fres = −kx) and moving on a surface that exerts a frictional force is subjected to an external forcing

function.)

There is more to be learned from the steady state response function in Eq. (25). A linear combi-

nation of a sine and cosine function having the same frequency can always be written as a single sine

or cosine function of the same frequency which is phase-shifted, i.e.,

A cosωt+B sinωt = C cos(ωt− φ) or C sin(ωt+ χ) . (26)

Note that the amplitude C is the same in both phase-shifted functions, but the phases φ and χ are

different - in fact, they are related to each other.

Here we shall derive the first result by means of a very simple “trick,” rewriting the LHS as follows,

A cosωt+B sinωt =
√

A2 +B2

[

A√
A2 +B2

cosωt+
B√

A2 +B2
sinωt

]

. (27)

Note that the sums of the squares of the coefficients of the cosine and sine function inside the square

brackets is 1. We’ll now let φ be the angle such that

cosφ =
A√

A2 +B2
, sinφ =

B√
A2 +B2

. (28)
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Then the term in square brackets in (27) becomes

cosωt cosφ+ sinωt sinφ = cos(ωt− φ) , (29)

where we have used the addition rule for the cosine function. Substitution into (27) yields the result,

A cos ωt+B sinωt =
√

A2 +B2 cos(ωt− φ) where tan φ =
B

A
. (30)

Note that we could also have let χ be the angle such that

cosφ =
B√

A2 +B2
, sinφ =

A√
A2 +B2

, (31)

so that the term in square brackets in (27) becomes

sinωt cosχ+ cosωt sinχ = sin(ω + χ) . (32)

We then have the result,

A cosωt+B sinωt =
√

A2 +B2 sin(ωt+ χ) where tanχ =
A

B
. (33)

A little work will show that the two phases, φ and χ, are related since the cos and sin functions are

related to each other by a phase.

We’ll use Eq. (30) to rewrite the steady state function Is(t) as follows,

Is(t) =
E0

√

R2 + (Lω)2
cos(ωt− φ) where tanφ =

Lω

R
. (34)

This equation tells us that the response of the LR circuit to the EMF forcing function,

E(t) = cos(ωt) , (35)

is a phase-shifted cosωt function. (Physically, the response is “out-of-phase” with respect to the

forcing – there is a time delay in the response.) The amplitude of the response Is(t),

A(ω) =
E0

√

R2 + (Lω)2
, (36)

is dependent upon the forcing frequency ω. Note that as ω decreases,

1. the amplitude A(ω) increases,

2. the phase shift φ decreases.
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In the limit ω → 0+, in which case the forcing function E(t) becomes the constant function E(t) = E0

(Case 1), the steady-state current becomes

Is(t) =
E0

R
, (37)

which is in agreement with our result from Case 1.

Also note that as the forcing frequency ω increases, the amplitude function A(ω) decreases – in fact,

A(ω) → 0 as ω → 0+ . (38)

(It is as if the forcing frequency is simply getting too large to produce a response in the system.)

200



Parametric representation of curves

Relevant section from Stewart: 10.1

Last week, we determined the trajectory of a projectile with mass m (e.g., a “cannonball” )

launched from position (0, 0) on the earth’s surface with initial speed v0 > 0 at an angle 0 < θπ/2 to

the horizontal. Its trajectory is given as

x(t) = (v0 cos θ) t

y(t) = (v0 sin θ) t−
1

2
gt2 , t > 0 . (39)

(Actually, the equations are valid only until the time t when the mass m hits the ground again at

position (R, 0), where R is the range.) The above equations can be written compactly in vector form

as follows,

x(t) = (x(t), y(t))

=

(

(v0 cos θ)t, (v0 sin θ)t−
1

2
gt2

)

. (40)

The two equations in (39) comprise a parametric representation of the trajectory curve in R
2.

The word “parametric” refers to the parameter t – in this case, time – used to define the coordinates

x(t) and y(t).

Recall that we then eliminated the t variable so that the curve could be expressed in the form y = f(x).

In this case,

y = Ax−Bx2 , (41)

where A and B are positive constants that depend upon the initial speed, v0, the angle θ and the

near-earth gravitational constant g. From this knowledge, one can deduce that the trajectory of the

projectile lies on a parabola that opens up downward.

There are a couple of lessons to be learned from the above example:

1. The trajectory of the particle was determined by solving Newton’s equations of motion – differen-

tial equations involving the horizontal and vertical position functions x(t) and y(t), respectively,
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along with their derivatives. Fortunately, in this problem, x(t) and y(t) could be solved inde-

pendently. The result: A parametric representation of the trajectory. Note that the natural

parameter for such physical applications is time.

2. In order to get an idea of the nature of the trajectory in xy-space, we eliminated the parameter

t to express y in terms of x. In other words, the curve is expressed in the form y = f(x).

We now provide a more mathematical description of the parametric representation of curves. Further-

more, we’ll make the discussion rather general to treat curves in arbitrary dimensions, i.e., Rn, where

n ≥ 2, with the understanding that most applications will be concerned with n = 2 (motion in the

plane) and n = 3 (motion in 3-space). We’ll simply generalize the vector description of the trajectory

curve in Eq. (40) as follows. We consider the following vector-valued function,

F(t) = (f1(t), f2(t), · · · , fn(t)) , (42)

defined for some interval a ≤ t ≤ b. Each of the functions fk(t) is a mapping from RtoR, i.e.,

fk : R → R , 1 ≤ k ≤ n . (43)

The result is that the function F(t) is a mapping from R to R
n, i.e.,

F : R → R
n . (44)

Translation:

• The input to F is a real number, i.e., t ∈ [a, b].

• The output bfF (t) is an n-vector, i.e., an element of Rn.

In fact, if we consider the value F(t) to define the coordinates of a point x(t), then as we vary t ∈ [a, b],

the point

x(t) = F(t) = (f1(t), f2(t), · · · , fn(t)) (45)

traces out a path or curve in Rn. The coordinates of this point will be given by

xk(t) = fk(t) , 1 ≤ k ≤ n . (46)

At this point, it is instructive to consider a few examples. (These examples were actually discussed in

the Friday Lecture 20, but it is better, from a pedagogical perspective, to include them here.) In the

examples below, which mostly involve curves in R
2, we’ll often use the notation

x(t) = (x(t), y(t)) (47)
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instead of (f1(t), f2(t)). We also mention that the following notation,

x(t) = (f(t), g(t)), (48)

is used in the textbook by Stewart. Hopefully, there will be no confusion.

Example 1: The curve in R
2 defined by

x(t) = x0 + v1t y(t) = y0 + v2t , (49)

where t ∈ [0, 1]. We note that

x(0) = (x(0), y(0)) = (x0, y0) , (50)

i.e., the curve starts at the point (x0, y0). Furthermore, it ends at the point,

x(1) = (x(1), y(1)) = (x0 + v1, y0 + v2) . (51)

Without loss of generality, we’ll assume that v1 and v2 are both positive. If x(t) were describing the

motion of a particle, then we see that the horizontal velocity of the particle is x′(t) = v1 and its

vertical velocity is y′(t) = v2. These are constant, so it might be conjectured that the path of the

particle, i.e., the curve x(t), is a straight line. In fact, when t = 1, the particle will have moved v1

units to the right and v2 units upward, suggesting that the slope of this line is m = v2
v1
.

We’ll confirm this result by computing the relationship between y and x. We’ll do this by removing

the parameter t. First step: Express t in terms of x.

t =
x− x0
v1

. (52)

(Note that we have written x and not x(t).) Second step: Substitute this result into the equation for

y(t).

y = y0 + v2

(

x− x0
v1

)

=
v2
v1

x+

(

y0 −
v2
v1

x0

)

. (53)

This result is in the form y = mx+ b, so we confirm that the slope of the curve is m =
v2
v1

.

Example 2: The curve in R
2 defined by

x(t) = R cos t y(t) = R sin t . (54)
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We could identify a few representative points but it is perhaps just as quick to note that

x(t)2 + y(t)2 = R2 cos2 t+R2 sin2 t = R2 . (55)

The trajectory x(t) is seen to lie on a circle of radius R centered at (0, 0). In order to trace out this

circle once, and only once, we restrict the t-interval to [0, 2π].

If we restricted the t-interval to [0, π], then the curve x(t) would be only the upper semicircle, i.e.,

y(t) ≥ 0. On the other hand, if we were considering the above curve to represent the trajectory of a

mass m rotating about the origin for all time t ≥ 0, then we could consider the domain of definition

to be t ∈ [0,∞).

Example 3: The curve in R
2 defined by

x(t) = A cos t y(t) = B sin t , 0 ≤ t ≤ 2π , (56)

where A,B > 0. In the special case, A = B = R, we have the previous example, i.e., a circle of radius

R centered at (0, 0). But in the case A 6= B, it seems that we have a “squished” circle. Note that

x

A
= cos t and

y

B
= sin t , (57)

so that
x2

A2
+

y2

B2
= 1 , (58)

which is the standard equation of an ellipse centered at (0, 0) with x-intercepts (A, 0) and (−A, 0) and

y-intercepts (0, B), (0,−B).

Example 4: The curve in R
3 defined by

x(t) = R cos t y(t) = R sin t z(t) = At . (59)

Note that as far as x and y are concerned, there is circular motion. As such, if you looked at the

curve “from the top down,” i.e., from the positive z-axis downward to the xy-plane, you would see

only circular motion over the circle of Example 2.

But we now have another coordinate, i.e., z(t) = At. Let’s assume that A > 0. Then the motion

of the point in the z-direction is uniform, i.e., constant vertical velocity A.
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The combination of circular motion in the xy direction and uniform motion in the z direction

implies that the point traces out a helix in R
3. This helix is a subset of the cylindrical surface, or

simply “cylinder”,

x2 + y2 = R2, z ∈ R , (60)

which is sketched below. The z-axis is the principal axis of this cylinder.

x

y

z

x
2
+ y

2
= R

2
, z ∈ R

Derivative of the parametric representation function F(t).

In our discussion of the projectile motion problem, we worked with the following ideas without ever

formally justifying them: If

x(t) = (x(t), y(t)) , (61)

represented the position of the projectile, then

v(t) = x′(t) = (x′(t), y′(t)) (62)

was its velocity at time t and

a(t) = v′(t) = x′′(t) = (x′′(t), y′′(t)) (63)

was its acceleration. We now show these results more formally.

We first start with the vector valued function F(t),

F(t) = (f1(t), f2(t), · · · fn(t)) . (64)

The formal derivative of this function with respect to t should be defined as follows:

F′(t) = lim
h→0

F(t+ h)− F(t)

h
, (65)
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provided that the limit exists. Let’s examine the Newton quotion on the RHS a little more closely.

The numerator is the difference of two n-vectors, i.e.,

F(t+ h)−F(t) = (f1(t+ h), f2(t+ h), · · · fn(t+ h))− (f1(t), f2(t), · · · , fn(t))

= (f1(t+ h)− f1(t), f2(t+ h)− f2(t), · · · fn(t+ h)− fn(t)) , (66)

where the final line follows from the formal definition of the addition/subtraction of two n-vectors.

Division by h in the Newton quotient is equivalent to multiplication by the scalar
1

h
so that the Newton

quotient becomes

F(t+ h)− F(t)

h
=

1

h

[

(f1(t+ h), f2(t+ h), · · · fn(t+ h))− (f1(t), f2(t), · · · , fn(t))
]

=

(

f1(t+ h)− f1(t)

h
,
f2(t+ h)− f2(t)

h
, · · · fn(t+ h)− fn(t)

h

)

, (67)

We’ll now take the limit as h → 0:

lim
h→0

F(t+ h)− F(t)

h
= lim

h→0

1

h

[

(f1(t+ h), f2(t+ h), · · · fn(t+ h))− (f1(t), f2(t), · · · , fn(t))
]

= lim
h→0

(

f1(t+ h)− f1(t)

h
,
f2(t+ h)− f2(t)

h
, · · · fn(t+ h)− fn(t)

h

)

=

(

lim
h→0

f1(t+ h)− f1(t)

h
, lim
h→0

f2(t+ h)− f2(t)

h
, · · · lim

h→0

fn(t+ h)− fn(t)

h

)

=
(

f ′

1(t), f
′

2(t) · · · , f ′

n(t)
)

, (68)

provided that the individual limits exist. In summary, we have

F′(t) =
(

f ′

1(t), f
′

2(t) · · · , f ′

n(t)
)

, (69)

In other words, the derivative of the vector-valued function F(t) is the vector of derivatives of the

component functions fi(t).

If we now interpret the curve,

x(t) = F(t) , (70)

as the position of a particle at time t, then the derivative,

x′(t) = F′(t) , (71)

represents is the velocity, v(t), of the particle. Note that the velocity is a vector, i.e., an element of

R
n. At a time t, it represents the instantaneous direction of motion of the particle.
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Return to Example 2: The circle

x(t) = R cos t , y(t) = R sin t , (72)

which we can write compactly as

x(t) = (x(t), y(t)) = (R cos t, R sin t) . (73)

The velocity is easily computed to be

v(t) = x′(t) = (−R sin t, R cos t) . (74)

At this point, we note the following: Taking the inner product of x(t) and v(t),

x(t) · v(t) = (R cos t, R sin t) · (−R sin t, R cos t)

= −R2 cos t sin t+R2 sin t cos t

= 0 , for all t . (75)

This implies that the position vector x(t) and velocity vector v(t) are always orthogonal to each other.

A representative situation is sketched below.

x

y

x(t)

v(t)

(x(t), y(t))

Note that we can place these vectors anywhere we wish, but it is convenient to place the position

vector x(t) with head at (0,0) and tail at the point (x(t), y(t). And it is convenient to place the

velocity vector v(t) with head at point (x(t), v(t)).

What we have shown above is probably well known to you: The fact that the tangent to a circle at a

point (x, y) on the circle is perpendicular to the radial line that extends from the center of the circle

to point (x, y).
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Now let’s go one step further and compute the derivative of the velocity vector v(t) – in other words,

the acceleration vector,

a(t) = v′(t) . (76)

From Eq. (74),

v′(t) = (−R cos t,−R sin t) . (77)

But here we notice an interesting fact:

a(t) = v′(t) = −(R cos t, R sin t) = −x(t) . (78)

The acceleration vector points in the opposite direction to the position vector, as sketched below.

x

y

a(t)

(x(t), y(t))

v(t)

The fact that the acceleration vector points inward is consistent with the observation that the

velocity vector v(t) is constantly moving leftward, i.e., inward. If x(t) represents the trajectory of a

mass m moving along the circular orbit, then this trajectory would have to be caused by a radial force

F, i.e., a force was exerted on m toward the origin (0, 0). This is consistent with Newton’s equation

of motion, F = ma, since we have already determined that the acceleration vector is a radial vector

that points inward, i.e., the vector a(t) = −x(t).
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Lecture 20

Parametric representation of curves (cont’d)

Computation of arclength

Relevant section of Stewart: 10.2

We now derive an integral formula for the arclength of the curve C obtained from the path,

x(t) = (x(t), y(t)) 1 ≤ t ≤ b , (79)

where

x(t) = f(t) y(t) = g(t) , a ≤ t ≤ b . (80)

We shall assume that f(t) and g(t) are differentiable on (a, b). We shall follow the same basic idea as

was done for the arclength integral associated with the curve y = f(x).

Following – what else? – the “Spirit of Calculus,” we first construct a partition of the t-interval [a, b]

in the usual way, i.e., for a given n > 0, define ∆t =
b− a

n
and the partition points,

tk = a+ k∆t , 0 ≤ k ≤ n , (81)

so that t0 = a and tn = b. Now let Pk denote the following points on the curve,

Pk = (x(tk), y(tk)) = (f(tk), g(tk)) 0 ≤ k ≤ n . (82)

(In the lecture, these points were called “Qk”.) These points Pk divide the curve C into n subcurves.

We’ll let Ck, 1 ≤ k ≤ n, denote the subcurve with endpoints Pk−1 and Pk. We’ll also let Lk denote

the length of Ck so that the length L of curve C is

L =

n
∑

k=1

Lk . (83)

Now comes the main idea: We approximate the length Lk of subcurveCk by the straight line connecting

Pk−1 to Pk, i.e.,

Lk ≃ ‖Pk−1Pk‖ . (84)

For a diagram that illustrates this construction, please see Figure 4 of Stewart’s textbook (Eighth

Edition), Section 10.2, Page 652.
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From Pythagoreas, the length of the line segment Pk−1Pk is

‖Pk−1Pk‖ =
√

(x(tk)− x(tk−1)2 + (y(tk)− y(tk−1))2

=
√

(f(tk)− f(tk−1)2 + (f(tk)− f(tk−1))2

= ∆t

√

(

f(tk)− f(tk−1)

∆t

)2

+

(

f(tk)− f(tk−1)

∆t

)2

(85)

By hypothesis, f and g are differentiable on (a, b). Therefore, by the Mean Value Theorem, there exist

a ck ∈ [tk−1, tk] and dk ∈ [tk−1, tk] such that

f ′(ck) =
f(tk)− f(tk−1)

∆t
g′(dk) =

g(tk)− g(tk−1)

∆t
. (86)

(Note that ck and dk are not necessarily the same point, since we are dealing with two different

functions, f(t) and g(t).) As a result, we have the approximation,

Lk ≃
√

(f ′(ck))2 + (g′(dk))2 ∆t . (87)

The total length L of the curve is then approximated by the sum,

L =

n
∑

k=1

Lk

≃
n
∑

k=1

√

(f ′(ck))2 + (g′(dk))2 ∆t . (88)

This may be viewed as a generalized Riemann sum, since the points of evaluation ck and dk are not

necessarily equal to each other. This is not a problem since, in the limit n → ∆, which implies

that ∆x → 0, the above sum will converge (under the hypothesis that f ′(t) and g′(t) are continuous

functions) to the integral

L =

∫

b

a

√

(f ′(t))2 + (g′(t))2 dt . (89)

This is the formula for the arclength of the curve C traced out by the point,

x(t) = (x(t), y(t) = (f(t), g(t)) , a ≤ t ≤ b . (90)

There is one noteworthy point about the integral in (89): Its integrand is the length of the velocity

vector,

v(t) = x′(t) = (f ′(t), g′(t)) , (91)

210



i.e.,

L =

∫

b

a

‖x′(t)‖ dt . (92)

But the length of the velocity vector, ‖v(t)‖, can be interpreted as the speed of the point as it traces

the path/curve C. Let us now recall that the arclength formula may also be written as

L =

∫

C

ds . (93)

In this case, we have

L =

∫

C

ds =

∫

b

a

‖x′(t)‖ dt , (94)

which implies that the infinitesimal arclength ds at a time t is given by

ds = ‖x′(t)‖ dt . (95)

In terms of “noninfinitesimals,” this implies that the distance ∆s travelled over a small time interval

∆t at time t is approximated as

∆s ≃ ‖x′(t)‖∆t . (96)

In words,

distance travelled ≃ speed × length of time interval.

Returning to the infinitesimal equation (95), we have

ds

dt
= ‖x′(t)‖ . (97)

The LHS does, in fact, represent speed – it is the instantaneous rate of change of arclength, or distance

travelled, with respect to t.

These results connect quite well to our earlier results for the arclength of the curve y = h(x) from

x = a to x = b. First of all, we may simply consider the following parametrization of this curve as

follows,

x = f(t) = t , y = h(x) = h(t) , a ≤ t ≤ b , (98)

so that the velocity vector is

x′(t) = (1, h′(t)) . (99)

Eq. (89) then becomes

L =

∫

b

a

√

1 + (h′(t))2 dt =

∫

b

a

√

1 + (h′(x))2 dx , (100)
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which is the formula that we derived for the length of y = h(x) earlier in the course.

So why all of the fuss about parametric representations of curves? The answer is that in our previous

treatment, we had assumed that the curve was generated by a function h(x). That meant that the

curve could never cross itself or even have two different values of y at a given value of x, e.g., a circle.

We don’t have to worry about such things with parametrized curves. They can cross themselves, etc..

We simply “do the math”.

Return to Example 2 from previous lecture: The following parametrization of a circle of radius

R centered at the origin,

x(t) = R cos t , y(t) = R sin t , 0 ≤ t ≤ 2π . (101)

The computation of the arclength is quite trivial, as compared to our earlier treatments. The velocity

vector is

x′(t) = (−R sin t, R cos t) , (102)

which implies that

‖x′(t)‖ = R . (103)

In other words, the speed is constant. The arclength L of the circle is therefore

L =

∫

b

a

‖x′(t)‖ dt

=

∫

2π

0

Rdt

= 2πR . (104)

Return to Example 3 from previous lecture: The following parametrization of an ellipse with

axis lengths A and B and centered at the origin,

x(t) = A cos t , y(t) = B sin t , 0 ≤ t ≤ 2π . (105)

The velocity vector is

x′(t) = (−A sin t, B cos t) , (106)

which implies that

‖x′(t)‖ =
√

A2 sin2 t+B2 cos2 t , (107)
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There is a complication, however, if A 6= B. Without loss of generality, let’s assume that A > B.

Then we can express the speed as

‖x′(t)‖ =

√

(A2 −B2) sin2 t+B2 sin2 t+B2 cos2 t

=
√

B2 + (A2 −B2) sin2 t

= B
√

1 + r2 sin2 t , (108)

where

r =

√

A2 −B2

B2
. (109)

The arclength integral for the ellipse is therefore

L =

∫

b

a

‖x′(t)‖ dt

= B

∫

2π

0

√

1 + r2 sin2 t dt . (110)

Unfortunately, there is no closed-form expression for this integral. It is an elliptic integral which

must be evaluated in terms of an infinite series. Even if we consider the top half of the ellipse as the

curve

y = b

√

1− x2

a2
, − a ≤ x ≤ b , (111)

we wouldn’t be able to express the arclength in terms of an integral that could be evaluated in closed

form. We would once again encounter an elliptic integral.

Extension of the above results to curves in R
n

Here we simply mention that the arclength formula in Eq. (89) for curves in R
2 can be generalized to

curves in R
n given by the parametrization,

x(t) = F(t) , a ≤ t ≤ b , (112)

where

F(t) = (f1(t), f2(t), · · · , fn(t)) . (113)

First of all, note that the velocity vector associated with the above trajectory is

v(t) = x′(t)

= F′(t)

= (f ′

1(t), f
′

2(t), · · · , f ′

n(t)) . (114)
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The infinitesimal arc length ds on this path will be given by

ds = ‖bfx′(t)‖ dt

=
√

(f ′

1
(t)2 + (f ′

2
(t))2 + · · ·+ (f ′

n(t))
2 dt . (115)

Then the length of the curve C generated by the parametrization in (112) is

L =

∫

C

ds

=

∫

b

a

‖x′(t)‖ dt

=

∫

b

a

√

(f ′

1
(t)2 + (f ′

2
(t))2 + · · ·+ (f ′

n(t))
2 dt . (116)

This result is a natural extension of Eq. (89) for curves in the plane.

Indeed, it was never mention that in the special case n = 1, i.e., motion in one-dimension,

x(t) = f(t) , a ≤ t ≤ b , (117)

Eqs. (89) and (116) reduce to

L =

∫

b

a

|x′(t)| dt , (118)

which we have encountered before. This may be interpreted as the total length travelled by a particle

from time t = a to time t = b (as opposed to its net displacement).
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Sequences

Relevant section from Stewart: 11.1

Only the last few minutes of the lecture were devoted to an introduction to sequences. The discussion

followed very closely the presentation by Stewart in Section 11.1 and therefore will not be presented

here.

Lecture 20

Sequences (cont’d)

Relevant section from Stewart: 11.1

The lecture once again followed very closedly the presentation by Stewart in Section 11.1 and will

not be presented here. The lecture ended with the following definitions:

• increasing and decreasing sequences,

• sequences which are bounded from above,

• sequences which are bounded from below,

• bounded sequences – sequences which are both bounded from above and from below.

The next lecture will cover the so-called Monotonic Sequence Theorem.
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