
Lecture 5

Series solutions to DEs

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.4.1

Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 2.1-2.3

As mentioned earlier in this course, linear second order DEs of the form

a2(x)y′′ + a1(x)y′ + a0(x)y = 0, (1)

where the ai(x) are polynomials in x, are encountered in many applications (e.g., Laplace’s

equation ∇2u = 0, separation of variables, etc.). Such DEs are rarely solvable in “closed form,”

i.e., in terms of standard functions. It would seem reasonable to seek solutions to (1) that

involve powers of x. One could try single powers of x but for polynomial ai(x), this probably

wouldn’t work. For the same reason, assuming y(x) to be a polynomial in x would probably

not work in general. So we might resort to “infinite polynomials,” i.e., power series expansions

of the form

y(x) =

∞
∑

n=0

an(x − x0)
n, (2)

where x0 is the point of expansion. (In many applications, x0 = 0.) By doing this, we are

assuming that the solution y(x) to our DE has a Taylor series expansion. Sometimes this will

work; other times it won’t, as we’ll see.

For the moment, we’ll consider a couple of DEs with the particularly simple form,

y′′ + P (x)y′ + Q(x)y = 0 , (3)

where P (x) and Q(x) are polynomial functions of x. Since they are polynomial functions, they

do not “blow up” at any x ∈ R. And note that the first term y′′ is not multiplied by anything.

As such, the above DE has no singular points. We shall assume solutions to Eq. (3) having the
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form,

y =
∞

∑

n=0

anx
n = a0 + a1x + a2x

2 + · · · , (4)

i.e., simple power series solutions.

Example 1: Consider the DE,

y′′ + y = 0 . (5)

(Of course, we know that two linearly independent solutions to this DE are y1(x) = cos x and

y2(x) = sin x, but let’s see what the power series in (4) can give us.)

We shall try two approaches to detemine power series solutions. The first approach involves

a straightforward substitution of the power series in (4) into the DE (5) where we write out

the expansions, at least to the first few terms. This approach will give an idea of how the

method works, at least for the first few terms. The second approach, a more mathematical one,

will be performed using sigma notation. In general, it provides a general relation between the

coefficients an, from which the series can be constructed.

Method No. 1: Writing out the power series explicitly to the first few terms

We start with the power series expansion assumed for the solution y(x), written out to the first

few terms, i.e.,

y(x) = a0 + a1x + a2x
2 + a3x

3 + · · · . (6)

We’ll assume that this series has a nonzero radius of convergence, i.e., it converges for |x| < R

where R > 0 is the radius of convergence. (We don’t worry about the actual value of R for the

moment and simply let the mathematics take us to the final result.) If the series converges for

|x| < R, then the derivative y′(x) will admit an expansion that is produced by differentiating

the series for y(x) termwise, i.e.,

y′(x) = a1x + 2a2x + 3a3x
2 + · · · . (7)
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From 1B Calculus, this series will also converge for |x| < R. We differentiate one more time to

produce the series expansion for y′′(x), since it is needed in Eq. (5),

y′′(x) = 2a2 + 6a3x + 12a4x
2 + · · · . (8)

We now substitute the series for y(x) and y′′(x) into (5):

(2a2 + 6a3x + 12a4x
2 + · · · ) + (a0 + a1x + a2x

2 + · · · ) = 0 . (9)

This is an equation that must be satisfied for all |x| < R, not just at one value of x. The

problem is that it involves an infinite number of powers of xn. But that is not really a problem.

We first collect terms in like powers of x - essentially a rearrangement of terms in the above

equation,

(2a2 + a0) + (6a3 + a1)x + (12a4 + a2)x
2 + · · · = 0 . (10)

Because of the linear independence of the functions xn, n = 0, 1, 2, · · · , the above equation is

satisfied for all |x| < R only if the coefficient of each power of x is zero. This leads to the

following equations,

2a2 + a0 = 0 , (11)

6a3 + a1 = 0 , (12)

12a4 + a2 = 0 . (13)

This might look like a formidable system of equations to solve, but it’s not really that bad.

Note that we can rewrite Eq. (11) as follows,

a2 = −1

2
a0 . (14)

And Eq. (12) can be rewritten as follows,

a3 = −1

6
a1 . (15)

Finally, Eq. (13) yields,

a4 = − 1

12
a2 . (16)
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Notice that each coefficient an is determined by the coefficient an−2. The reader might even be

able to see the general pattern in the above equations, i.e.,

an = − 1

n(n − 1)
an−2 , n = 2, 3, 4, · · · . (17)

We might also wish to “bump up” the index n by 2, i.e., n → n + 2 to yield

an+2 = − 1

(n + 2)(n + 1)
an , n = 0, 1, 2, · · · . (18)

This is an example of a recursion relation between the coefficients an. In this particular case,

the recursion relation shows that the coefficient a0 determines a2 which, in turn, determines a4.

In fact,

a4 = − 1

12
a2 = − 1

12

[

−1

2
a0

]

=
1

24
a0 . (19)

If we set n = 3 in Eq. (18), then we obtain a5:

a5 = − 1

20
a3 = − 1

20

[

−1

6
a1

]

=
1

120
a1 . (20)

We see that all even-indexed coefficients an, n even, can be expressed in terms of a0. As well, all

odd-indexed coefficients an, n odd, can be expressed in terms of a1. So what are the values of

a0 and a1? The answer is that there are no particular values for a0 and a1 – they are arbitrary!

That should be reminiscent of the arbitrary constants that are involved in the general solution

of a homogeneous DE. If we use the above results to express the coefficients a2-a5 in terms of

a0 and a1 in the in the power series expansion in (6), we obtain

y(x) = a0

[

1 − 1

2
x2 +

1

24
x2 + · · ·

]

+ a1

[

x − 1

6
x3 +

1

120
x5 + · · ·

]

. (21)

If we rewrite this equation as

y(x) = a0

[

1 − 1

2!
x2 +

1

4!
x2 + · · ·

]

+ a1

[

x − 1

3!
x3 +

1

5!
x5 + · · ·

]

. (22)

the reader may recognize that the method has generated the first three terms in the Taylor

series expansions of cos x and sin x, i.e.,

y(x) = a0 cos x + a1 sin x . (23)

Of course, this is what we were hoping for since we know that it is the general solution of the

DE in (5). In other words, our series solution method has produced the general solution.
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Method No. 2: Using sigma notation

We’ll now employ sigma notation and show that it will produce the general recursion relation

between series coefficients an – no guessing is necessary. We start with the series expansion for

y(x),

y(x) =
∞

∑

n=0

anx
n . (24)

The series for y′(x) is obtained by termwise differentiation, which means that we simply compute

the derivative of anxn:

y′(x) =

∞
∑

n=1

nanxn−1 . (25)

Note that the summation now starts at n = 1, which is in agreement with Eq. (7), where we

wrote out the first few terms of y′(x) explicitly. Differentiating one more time yields the series

for y′′(x),

y′′(x) =
∞

∑

n=2

n(n − 1)anxn−2 , (26)

which is in agreement with Eq. (7).

The next step is to substitute the expansions in (24) and (26) into the DE in Eq. (5). As

you’ll recall from Method No. 1, we shall eventually have to collect terms having like powers

of xn. For this reason, it is necessary to “bump up” the index and power n − 2 in the series

expansion for y′′(x) to the index and power n. We could simply replace n with n + 2 in all

places in Eq. (26) but then remains the question of determining the lowest index. Just to make

sure that we do things correctly, we can define a new index,

k = n − 2 which implies that n = k + 2 . (27)

We then replace n with k + 2 in (26):

y′′(x)

∞
∑

?

(k + 2)(k + 1)ak+2x
k . (28)

The “?” means that we have to determine the lowest possible value of k. Since the lowest index

of n in Eq. (26) is 2, it follows, from k = n− 2, that the lowest index of k in (28) is k = 0, i.e.,

y′′(x)
∞

∑

k=0

(k + 2)(k + 1)ak+2x
k . (29)
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Finally, we replace k with n so that all powers of x are in xn:

y′′(x)
∞

∑

n=0

(n + 2)(n + 1)an+2x
n . (30)

We now substitute Eqs. (24) and (30) into the DE in (5) to yield

y′′ + y =
∞

∑

n=0

(n + 2)(n + 1)an+2x
n +

∞
∑

n=0

anx
n = 0 . (31)

We can then combine the two summations into one summation, which is essentially collecting

terms in like powers of xn:

∞
∑

n=0

[(n + 2)(n + 1)an+2 + an] xn = 0 . (32)

Since this equation must hold for all |x| < R, it is necessary that the coefficient of each term

in xn is zero, i.e.,

(n + 2)(n + 1)an+2 + an = 0 , n = 0, 1, 2, · · · . (33)

At this point, note that Eq. (33) is in agreement with Eqs. (11), (12) and (13), which were

obtained by writing out the first few terms of the series explicitly. An advantage of the sigma

notation method is that it yields the general relation without having to guess it from particular

cases. From Eq. (33), we have the following recursion relation for the an,

an+2 = − 1

(n + 2)(n + 1)
an n = 0, 1, 2, · · · , (34)

which is in agreement with Eq. (18) obtained in Method No. 1.

Let us once again compute a2, a4 and a6 from a0 using the above recursion relation. Choosing

n = 0, n = 2 and n = 4 yields,

a2 = − 1

2 · 1a0 = − 1

2!
a0

a4 = − 1

4 · 3a2 =
1

4 · 3 · 2 · 1a0 =
1

4!
a0

a6 = − 1

6 · 5a4 =
1

4 · 3 · 2 · 1a2 = − 1

6!
a0 . (35)
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The reader should be able to determine the general pattern for even-indexed coefficients,

a2k =
(−1)k

(2k)!
a0 , k = 1, 2, 3, · · · . (36)

Once again a0 is arbitrary.

We may also compute a3, a5 and a7 from a1 by choosing n = 1, n = 3 and n = 5 in (34),

a3 = − 1

3 · 2a1 = − 1

3!
a1

a5 = − 1

5 · 4a3 =
1

5 · 4 · 3 · 2a1 =
1

5!
a1

a7 = − 1

7 · 6a5 =
1

7 · 6 · 5 · 4a3 = − 1

7!
a0 . (37)

In general, for odd-indexed coefficients,

a2k+1 =
(−1)k

(2k + 1)!
a1 , k = 1, 2, 3, · · · . (38)

The series expansion in (6) may then be grouped into even and odd powers in the form

y(x) =
∞

∑

k=1

a2kx
2k +

∞
∑

k=1

a2k+1x
2k+1 , (39)

which, using Eqs. (36) and (38), yields

y(x) = a0

∞
∑

k=0

(−1)k

(2k)!
x2k + a1

∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1

= a0y1(x) + a1y2(x) , (40)

where y1(x) and y2(x) are linearly independent solutions. Neither function is a constant multiple

of the other. In fact, y1(x) is an even function of x and y2(x) is an odd function. Recalling

either the results of Method No. 1 or 1B Calculus, we recognize these series expansions as

Taylor series expansions of sin x and cos x, respectively, i.e.,

y1(x) = sin x , y2(x) = cos x . (41)

Finally, using the Ratio Test it can be verified (Exercise) that both series converge for all x ∈ R.
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Some theoretical matters

Here we make some comments about the theoretical basis of the series expansion method. The

first step is to once again recast Eq. (1) into standard form,

y′′ + P (x)y′ + Q(x)y = 0, (42)

where

P (x) =
a1(x)

a2(x)
, Q(x) =

a0(x)

a2(x)
. (43)

We see that if the ak(x) are polynomials in x, then P (x) and Q(x) could be rational functions

in x. As such, we may have to worry about points for which a2(x) = 0.

The point x = x0 is an ordinary point of Eq. (42) if P (x) and Q(x) are analytic at x0,

that is, they possess Taylor series expansions of the form

P (x) =

∞
∑

n=0

pn(x − x0)
n, Q(x) =

∞
∑

n=0

qn(x − x0)
n, (44)

that both have nonzero radii of convergence. (This means that all derivatives of P and Q exist

at x0.) If x0 is not an ordinary point, then it is a singular point. We shall be looking at

singular points in a little while.

There is an important theorem – see the book by Simmons, Theorem A on page 155 – that

treats the case of series expansions about ordinary points:

Theorem: If there exists an R > 0 such that both series for P (x) and Q(x) converge for all

|x − x0| < R, then the ODE in (42) possesses two linearly independent power series solutions

that converge for all |x−x0| < R. It follows that if P (x) and Q(x) are both polynomials, hence

analytic for all x ∈ R, then the series solutions must converge for all x ∈ R.

Example 2: We now consider the DE,

y′′ + 2x2y′ + xy = 0. (45)
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Here P (x) = 2x2 and Q(x) = x are both analytic everywhere. We shall choose x0 = 0 and

assume series solutions of the form

y(x) =
∞

∑

n=0

anxn. (46)

We expect the series solutions to converge for all x ∈ R.

In what follows, a rather simplified method of substitution of power series will be used. It

will save some work in that we won’t worry about where each series starts. We allow for the

appearance of coefficients with negative indices ak for k < 0 in our recurrence relations for the

an but simply assume that such coefficients are zero, i.e., we assume that

ak = 0 for k < 0 . (47)

To illustrate, we take the formal derivatives of the above power series and disregard the actual

numerical value of the lower limit of summation:

y(x) =
∑

n

anx
n, y′(x) =

∑

n

nanx
n−1, y′′(x) =

∑

n

n(n − 1)anx
n−2. (48)

Substitution into the DE yields

∑

n

n(n − 1)anx
n−2 +

∑

n

2nanx
n+1 +

∑

n

anx
n+1 = 0 (49)

We then collect like powers of xn, “bumping up” or “bumping down” indices within each

summation in order to produce the term xn. For example, in order to produce xn in the first

summation, we have to replace each n with n + 2. (This is equivalent to setting k = n − 2,

implying n = k + 2, etc.. Too much work!) The net result is the following summation:

∑

n

[(n + 2)(n + 1)an+2 + 2(n − 1)an−1 + an−1]x
n = 0, (50)

which can be further simplified to

∑

n

[(n + 2)(n + 1)an+2 + (2n − 1)an−1]x
n = 0, (51)

We therefore have the difference equation

(n + 2)(n + 1)an+2 + (2n − 1)an−1 = 0, for all n ∈ Z. (52)
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For example, we could set n = −20, 000, but both terms would be zero. It’s only when we

get close to zero that interesting things happen. If we let n = −1, then the above equation

becomes

0 · a−1 + (−3)a−2 = 0 =⇒ 0 = 0 . (53)

Clearly, this is not telling us anything. But when we set n = 0, Eq. (52) becomes

2a2 + (−1)a−1 = 0. (54)

But a−1 = 0, implying that a2 = 0. When n = 1,

6a3 + a0 = 0, implying that a3 = −a0

6
. (55)

For n ≥ 1, (52) can be rearranged to give

an+2 = − 2n − 1

(n + 2)(n + 1)
an−1, n = 1, 2, · · · . (56)

And if you want to make this recurrence relation look a little “nicer,” you can bump up the

indices by 1 to give

an+3 = − 2n + 1

(n + 3)(n + 2)
an, n = 0, 1, · · · . (57)

We now see that a0 determines a3 which determines a6, etc.. And a1 determines a4 which

determines a7, etc.. Since a2 = 0, it follows that a5 = a8 = · · · = 0. With a little more work,

we can generate the next few elements of each series. As a result, we obtain the following two

power series expansions:

a0

[

1 − 1

6
x3 +

7

180
x6 − · · ·

]

(58)

and

a1

[

x − 1

4
x4 +

3

56
x7 − · · ·

]

. (59)

These two series are linearly independent so that we can write the general solution of the DE

as

y(x) = a0

[

1 − 1

6
x3 +

7

180
x6 − · · ·

]

+ a1

[

x − 1

4
x4 +

3

56
x7 − · · ·

]

. (60)
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Suppose we are given the initial condition y(0) = 1 and y′(0) = 1. The first condition

implies that a0 = 1. The second implies that a1 = 1. The solution to this initial value problem

is the function defined by

y(x) = 1 + x − 1

6
x3 − 1

4
x4 +

7

180
x6 − · · · . (61)

For reasons stated earlier, this series will converge for all x ∈ R.

Exercise: Study Example 1.6 in the AMATH 351 Course Notes by J. Wainwright, p. 32.
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Special case: Legendre’s differential equation

(This section was not covered in class and is presented for information. It may be

helpful in Problem Set No. 2.)

Let us now consider the so-called Legendre equation,

(1 − x2)y′′ − 2xy′ + p(p + 1)y = 0, p ∈ R, (62)

which occurs quite frequently in applied mathematics and theoretical physics. (In the solu-

tion of the Laplace and Schrödinger equations in three dimensions, x above represents the

angular coordinate θ. In quantum mechanics, the constant p will represent the orbital angular

momentum quantum number.) Rewriting this DE in standard form,

y′′ − 2x

1 − x2
y′ +

p(p + 1)

1 − x2
y = 0, (63)

we have

P (x) = − 2x

1 − x2
, Q(x) =

p(p + 1)

1 − x2
. (64)

The functions P (x) and Q(x) are seen to be analytic at x = 0. The “bad” points of this DE

are x = ±1. As a consequence, the power series of P (x) and Q(x) have power series expansions

about 0 with radius of convergence R = 1. For example,

P (x) =
2x

1 − x2
= 2x[1 + x2 + x4 + · · · ], |x| < 1. (65)

From the theorem cited in the previous lecture, we expect that power series solutions of (1)

having the form

y(x) =
∑

n

anx
n (66)

will also have radii of convergence R = 1.

Let us now work out these series solutions. We substitute the above expansion into the

DE in (1) (not paying attention to the lower limits of summation, with the understanding that

an = 0 for n < 0):

∑

n(n − 1)anx
n−2 − x2

∑

n(n − 1)anxn−2 − 2x
∑

nanxn−1 + p(p + 1)
∑

anx
n = 0. (67)
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Collecting like terms in xn, and bumping up or down the indices of each summation as necessary:

∑

[(n + 2)(n + 1)an+2 − n(n − 1)an − 2nan + p(p + 1)an]xn = 0, (68)

which can be simplified further to

∑

[(n + 2)(n + 1)an+2 + [−n(n + 1) + p(p + 1)]an]xn = 0. (69)

This implies that

(n + 2)(n + 1)an+2 + [−n(n + 1) + p(p + 1)]an = 0 (70)

for all n. Setting n = 0 gives

2a2 + p(p + 1)a0 = 0, or a2 = −1

2
p(p + 1)a0. (71)

Setting n = 1 gives

6a3 + [−2 + p(p + 1)a1 = 0, or a3 = −1

6
(p − 1)(p + 2)a1. (72)

For general n ≥ 0,

an+2 =
n(n + 1) − p(p + 1)

(n + 1)(n + 2)
an (73)

= −(p − n)(p + n + 1)

(n + 1)(n + 2)
an

Let’s compute the next two terms: For n = 2 in (73), we have

a4 = −(p − 2)(p + 3)

4 · 3 a2 =
p(p − 2)(p + 1)(p + 3)

4!
a0, (74)

and for n = 3 we have

a5 = −(p − 3)(p + 4)

5 · 4 a2 =
(p − 1)(p − 3)(p + 2)(p + 4)

5!
a1, (75)

We can express this result in the form

y(x) = a0L
0
p(x) + a1L

1
p(x), (76)
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where L0
p(x) is an even-powered series (hence defining an even function over its interval of

convergence) and L1
p(x) is an odd-powered series (hence defining an odd function over its

interval of convergence).

If p is a nonnegative integer, then one of the above series terminates and the other remains

as an infinite series:

1. If p is even, then the series in L0
p(x) terminates, resulting in an even polynomial of degree

p.

2. If p is odd, then the series in L1
p(x) terminates, resulting in an odd polynomial of degree

p.

We tabulate the first few polynomials that result from p being a nonnegative integer:

1. p = 0: L0
0(x) = 1,

2. p = 1: L1
1(x) = x,

3. p = 2: L0
2(x) = 1 − 3x2,

4. p = 3: L1
3(x) = x − 1

3
x3.

These polynomials (up to a constant) are known as the Legendre polynomials and are extremely

important in applied mathematics and theoretical physics. Such polynomial solutions can also

exist for a number of other second order DEs encountered in physics, e.g., Laguerre, Hermite

DEs.
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Lecture 6

Series solutions at singular points – the method of Frobenius

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.4.2

Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 2.4-2.5

In many applications, one is forced to construct solutions to DEs about singular points.

For example, x = 0 is a singular point of Bessel’s equation – we’ll discuss it in detail later –

yet it is still a very convenient point around which to expand. There is still hope, for there

are “bad” singular points and “not so bad” singular points. We shall be able to work with the

latter.

Let us once again consider a second order linear ODE written in standard or normalized

form,

y′′ + P (x)y′ + Q(x)y = 0. (77)

Recall that x0 is an ordinary point of (77) if P (x) and Q(x) are analytic at x0: A function

f(x) is analytic at a point x0 if it possesses a Taylor power series representations about x0 of

the form

f(x) =
∞

∑

n=0

an(x − x0)
n . (78)

This implies that f(x) and all of its derivatives are defined at x0.

We now consider the case that x0 is not an ordinary point of (77), i.e., at least one of P (x)

and Q(x) are not analytic at x0. Then x0 is a singular point. Suppose, however, that the

functions

(x − x0)P (x) and (x − x0)
2Q(x)

are analytic at x0. Then x0 is said to be a regular singular point. Otherwise, it is an irregular

singular point. The main idea here is that for x0 to be a regular singular point,

1. P (x) behaves no worse than
1

x − x0
at x0 and
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2. Q(x) behaves no worse than
1

(x − x0)2
at x0.

Examples:

1. The ODE

x3y′′ + x2y′ + y = 0.

In standard form, it becomes

y′′ +
1

x
y′ +

1

x3
= 0.

Clearly x0 = 0 is a singular point, with

P (x) =
1

x
, Q(x) =

1

x3
.

But:

xP (x) = 1 is analytic at 0

x2Q(x) =
1

x
is not analytic at 0.

Therefore x = 0 is an irregular singular point.

2. The ODE

x2y′′ + xy′ + y = 0.

In standard form, it becomes

y′′ +
1

x
y′ +

1

x2
= 0.

Clearly x0 = 0 is a singular point, with

P (x) =
1

x
, Q(x) =

1

x2
.

But:

xP (x) = 1 is analytic at 0

x2Q(x) = 1 is also analytic at 0.

Therefore x = 0 is a regular singular point.
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In what follows, we shall consider only the case x0 = 0 because it is the most commonly

encountered singular point. If x0 = 0 is a singular point, then a Taylor series expansion of the

form,

y(x) =
∑

n

anx
n , (79)

will not generally work. However, if x0 = 0 is a regular singular point, then a modified power

series solution of the form

y(x) = xr
∞

∑

n=0

anxn =
∞

∑

n=0

anx
n+r, a0 6= 0, (80)

where r is to be determined, may work. This is known as the method of Frobenius.

Note the condition that a0 be nonzero in (80): This is to guarantee that the series

starts somewhere. As before, we shall assume that all coefficients with negative indices are

zero, i.e.,

an = 0 for n < 0 . (81)

Also note what the Frobenius method is doing: it is trying to accomodate for a possible

singularity of the solution y(x) to the DE at the singular point x0 = 0. Near x = 0, y(x)

behaves approximately as

y(x) ≈ xr as x → 0. (82)

If r < 0, then y(x) is not continuous at 0. You have already encountered such a situation with

Euler’s equation,

x2y′′ + pxy′ + qy = 0 , (83)

which may admit solutions of the form y(x) = xr.

Example: Consider the DE

4xy′′ + y′ + y = 0. (84)

Here,

P (x) =
1

4x
, Q(x) =

1

4x
,
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so that x = 0 is a singular point. But

xP (x) =
1

4
, x2Q(x) =

x

4
,

which are both analytic at x = 0. Therefore x = 0 is a regular singular point.

We now substitute the Frobenius series (80) into the DE, differentiating termwise. (As

before, we shall not bother to determine the lower indices of each summation. The condition

that coefficients with negative indices are zero will take care of everything.)

y′ =
∑

(n + r)anx
n+r−1, y′′ =

∑

(n + r)(n + r − 1)anxn+r−2.

Substitution into the DE yields

4
∑

(n + r)(n + r − 1)anx
n+r−1 +

∑

(n + r)anx
n+r−1 +

∑

anx
n+r = 0.

We now collect terms in xn+r, “bumping up” or “bumping down” indices in the various sum-

mations in order to obtain the proper power of x. For example, in order to produce xn+r in the

first summation, we must replace n with n + 1. The same is true for the second summation.

The third summation can be left alone. The result is

∑

[4(n + r + 1)(n + r)an+1 + (n + r + 1)an+1 + an]xn+r = 0.

Since all coefficients of xn+r must vanish (because this relation is to hold true for all x on some

interval I), we have, after a little simplification,

(n + r + 1)(4n + 4r + 1)an+1 + an = 0, for all n. (85)

Now if we use n = −10, 000, this relation is trivially satisfied, since a−9999 and a10,000 are both

zero. But once we get to indices with values near zero, something happens. For n = −2, the

LHS is automatically zero, since a−1 = a−2 = 0. But for n = −1, this relation becomes

r(4r − 3)a0 + a−1 = 0 . (86)

Recall that a−1 = 0. Because of the condition a0 6= 0, we have the following condition,

r(4r − 3) = 0. (87)
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This is known as the indicial equation. The roots of this equation correspond to the values of

r that we were looking for in the Frobenius solution (80). In this case, the roots are

r1 = 0 and r2 =
3

4
. (88)

Each of the roots will generate a Frobenius solution. Once we’ve chosen a root ri, we use the

recursion relation (85) to generate the series coefficients.

Let us first rewrite the recursion relation (85) as follows,

an+1 = − 1

(n + r + 1)(4n + 4r + 1)
an, n ≥ 0. (89)

We now consider the series which are defined for each of the two values of r, hoping that two

linearly independent solutions will be generated.

Case 1: r = 0

The recursion relation in (89) becomes

an+1 = − 1

(n + 1)(4n + 1)
an, n ≥ 0.

• n = 0: a1 = −a0

• n = 1: a2 = − 1

2 · 5a1 =
1

2 · 5a0

• n = 2: a3 = − 1

3 · 9a2 = − 1

2 · 3 · 5 · 9a0

Thus the Frobenius series solution is, to four nonzero terms,

y1(x) = a0

[

1 − x +
1

10
x2 − 1

270
x3 + · · ·

]

With a little more work, we can determine the general form of the coefficients,

ak =
(−1)k

k!

[

Πk
i=1

1

4i − 3

]

a0.

Going a little further, we can show that

lim
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

= 0,
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implying that the series converges for all x ∈ R.

Case 2: r =
3

4
. The recursion relation in (89) becomes, after simplification,

an+1 = − 1

(n + 1)(4n + 7)
an, n ≥ 0.

• n = 0: a1 = −1

7
a0

• n = 1: a2 = − 1

2 · 11
a1 =

1

2 · 7 · 11
a0

• n = 2: a3 = − 1

3 · 15
a2 = − 1

2 · 3 · 7 · 11 · 15
a0

Thus the Frobenius series solution is, to four nonzero terms,

y(x) = a0x
3/4

[

1 − 1

7
x +

1

154
x2 − 1

6930
x3 + · · ·

]

The general form of the coefficients is

ak =
(−1)k

k!

[

Πk
i=1

1

4i + 3

]

a0,

from which it follows that

lim
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

= 0,

This series also converges for all x ∈ R.

The two series yielded by the roots r1 = 0 and r2 =
3

4
are linearly independent. Therefore, the

general solution of this DE is given by

y(x) = c1

[

1 − x +
1

10
x2 − 1

270
x3 + · · ·

]

+ c2x
3/4

[

1 − 1

7
x +

1

154
x2 − 1

6930
x3 + · · ·

]

(90)

Remark: Notice how we arrived naturally at the indicial equation (87) by collecting terms

in xn+r to produce relation (89) and then setting n appropriately to isolate the nonzero a0
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coefficient. Working in this way, one avoids having to memorize the indicial equation (1.119)

presented in the Course Notes by J. Wainwright on p. 33.

It is not always the case that the Frobenius method will yield two linearly independent

solutions. For example, consider the DE

4x2y′′ − 8xy′ + (x + 5)y = 0. (91)

The standard form of this DE is

y′′ − 2

x
y′ +

x + 5

4x2
y = 0 . (92)

Here,

P (x) = −2

x
, Q(x) =

(x + 5)

4x2
. (93)

The point x0 = 0 is a singular point since P (0) and Q(0) are undefined. However,

xP (x) = −2 and x2Q(x) =
1

4
(x + 5) (94)

are analytic at 0, so x0 = 0 is a regular singular point.

If we assume a Frobenius series solution of the form

y(x) = xr
∑

n

anxn =
∑

n

anx
n+r, a0 6= 0, (95)

we arrive at the recursion relation (Exercise):

[4(n + r)(n + r − 1) − 8(n + r) + 5]an + an−1 = 0. (96)

Setting n = −1 gives the indicial equation

4r2 − 12r + 5 = 0, (97)

which has roots r1 =
1

2
and r2 =

5

2
.
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Case 1: r =
5

2
. The recursion relation in (96) becomes

4n(n + 2)an + an−1 = 0, (98)

which can be rearranged to give

an = − 1

4n(n + 2)
an−1, n ≥ 1. (99)

This recursion yields a series of the form

y1(x) = a0x
5/2

[

1 − 1

12
x +

1

384
x2 − · · ·

]

(100)

With a little more work, we can determine the general form of the coefficients,

ak =
(−1)k

k!

1

22k−1k!(k + 2)!
a0. (101)

and establish that the series converges for all x ∈ R.

Case 2: r =
1

2
. The recursion relation in (96) becomes

4n(n − 2)an + an−1 = 0, (102)

which can be rearranged to give

an = − 1

4n(n − 2)
an−1, n ≥ 1. (103)

This looks problematic: When n = 2, the denominator on the RHS is zero. Thus it appears

that the method breaks down. Another way to see this is to work with relation (102):

• n = 0: 0 · a0 + a−1 = 0. This is automatically satisfied by any a0.

• n = 1: −4 · a1 + a0 = 0, implying that a1 = −a0/4. So far, so good.

• n = 2: 0 · a2 + a1 = 0. This implies that a1 = 0 which, from the n = 1 case, implies that

a0 = 0, which contradicts the original Frobenius assumption that a0 6= 0.
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Therefore, the root r =
1

2
does not yield a solution. But all is not lost, for we can always

generate a second linearly indpendent solution using the reduction of order method. Recall

that we assume a second solution of the form y2(x) = u(x)y1(x), where y1 is a known solution,

in this case our Frobenius solution for r =
5

2
. The method yields the following equation for

u′(x):

u′(x) =
1

y1(x)2
e−

R

P (x)dx (104)

In this case P (x) = −2

x
so that the above equation becomes

u′(x) =
x2

y1(x)2
. (105)

We can now formally substitute the series for r =
5

2
into the above expression to produce a

series expansion for u′(x):

u′(x) =
x2

[x5/2
∑

∞

n=0 anxn]2

=
1

x3

1

[
∑

∞

n=0 anxn]2

= x−3[c0 + c1x + c2x
2 + · · · ],

where we have formally inverted the square of the anxn series. Here c0 = 1/a2
0. Antidifferenti-

ation produces the following result for u(x) (setting the arbitrary constant C = 0):

u(x) = − c0

2x2
− c1

x
+ c2 ln x + c3x + · · · .

Remember that we then have to multiply this series by our y1 series to give the second, linearly

independent solution:

y2(x) = u(x)y1(x)

=
[

− c0

2x2
− c1

x
+ c2 ln x + c3x + · · ·

]

x5/2

∞
∑

n=0

anx
n.

Note: The appearance of the logarithmic term in y2(x) explains why we could not generate

the general solution of this DE with the Frobenius method alone. Now, you may ask, what if
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one tried a solution of the form

y(x) = xr ln x

∞
∑

n=0

anx
n ?

This is the basis of asymptotic analysis, which seeks to determine the so-called dominant be-

haviour of a function near a point, in this case, a singular point of a DE. Our graduate course

AMATH 743 deals with this subject.

To summarize, we simply state what can or cannot be accomplished by the Frobenius

method at a regular singular point. Given that the indicial equation has two roots, r1 and r2:

• If r1 − r2 is not an integer (which also implies that r1 6= r2), then the Frobenius method

yields two linearly indpendent solutions.

• If r1 − r2 is an integer, there are two cases:

– If r1 = r2, then only one solution is obtained.

– If r2 6= r2, then at least one solution is guaranteed.

If only one solution is obtained, we may use reduction of order to find another linearly inde-

pendent solution.

66



Lecture 7

An important application – Bessel’s equation

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.5

Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 2.6-2.10

Recall Bessel’s equation of order p:

x2y′′ + xy′ + (x2 − p2)y = 0, p ≥ 0. (106)

In normal form, it becomes

y′′ +
1

x
y′ +

(

1 − p2

x2

)

y = 0, (107)

so that

P (x) =
1

x
, Q(x) = 1 − p2

x2
. (108)

from which we see that x = 0 is a singular point. Since

xP (x) = 1 and x2Q(x) = x2 − p2 , (109)

are both analytic at x0 = 0, it is a regular singular point. We may therefore assume a

Frobenius-type series solution of the form

y(x) =
∞

∑

n=0

anxn+r, a0 6= 0. (110)

Before our discussion on series solutions to Bessel’s equation, recall that you have already

seen one particular set of solutions to Bessel’s DE. In Problem Set No. 1, you showed that

y1(x) =
1√
x

sin x , y2(x) =
1√
x

cos x , (111)

were linearly independent the particular case p =
1

2
. The graphs of these two functions are

shown below over the interval [0, 20].

As we’ll see later, solutions to Bessel’s DE for all p ∈ R exhibit some kind of oscillatory

behaviour. (We shall also show later that, in general, the zeros two linearly independent
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solutions y1(x) and y2(x) interlace each other, i.e., each zero of one solution is found between

two consecutive zeros of the other, and vice versa.)

One final set of comments before we discuss series solutions to Bessel’s DE: If we assume a

solution to Bessel’s DE in (106) of the form

y(x) =
1√
x
u(x) , (112)

then, after some algebraic manipulation, we find that u(x) satisfies the following DE,

u′′ +

(

1 +
1 − 4p2

4x2

)

u = 0 . (113)

(Why we employ
1√
x

in (112) will be discussed in the next section.)

Note that as x → ∞, the
1

x2
in (113) becomes negligible so that solutions to (113) will be

well approximated by solutions to the DE,

v′′ + v = 0 . (114)

Of course, the general solution to (114) is

v(x) = c1 sin x + c2 cos x . (115)

Combining this result with Eq. (112), we claim that for very large x, any solution to Bessel’s

DE in (106) behaves as

y(x) ∼= c1
1√
x

sin x + c2
1√
x

cos x , (116)

68



for suitable values of c1 and c2. Note that in the special case p =
1

2
, the DE in (113) is exactly

the DE in (114) so that the approximation in (116) becomes an equality, which is in agreement

with Eq. (111).

Let us now return to an investigation of Frobenius series solutions of Bessel’s DE having

the form,

y(x) =
∞

∑

n=0

anxn+r, a0 6= 0. (117)

Termwise differentiation and substitution of the resulting series into the DE in (106), fol-

lowed by a collection of like terms in xn+r yields

∑

[(n + r)(n + r − 1)an + (n + r)an + an−2 − p2an]xn+r = 0 . (118)

After a some additional algebra, we have the result,

[(n + r)2 − p2]an + an−2 = 0 . (119)

Setting n = 0 gives

[r2 − p2]a0 = 0, (120)

since a2 = 0. And since a0 6= 0, we have

r2 − p2 = 0, (121)

the indicial equation associated with Bessel’s DE of order p. The roots of this equation are

r1 = p and r2 = −p . (122)

This implies that

r1 − r2 = 2p . (123)

From the summary of the previous lecture we can conclude the following:

• If r1 − r2 = 2p is not an integer, then we can obtain two linearly independent Frobenius

solutions,

y1(x) = xp
∑

anx
n, y2(x) = x−p

∑

anx
n .
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• If r1 − r2 = 2p is an integer, then we can obtain at least one solution. If we can’t obtain

a second one using the Frobenius method, we can generate a second solution using the

method of reduction of order applied to our one Frobenius solution. In this case, it is

possible that the solution will have logarithmic terms. (Previous lecture.)

The discussion in the Course Notes – Section 1.5, pp. 39-55 – is quite readable and thorough,

so there is no point in duplicating much of the information presented there. We shall, however,

identify some main points.

First of all, the Frobenius method will always be able to generate one solution. For p ≥ 0,

let us return to Eq. (119). First of all, we use the fact that

(n + p)2 − p2 = (n + p + p)(n + p − p) = (n + 2p)n (124)

to rewrite (119) as

n(n + 2p)an + an−2 = 0 . (125)

Setting n = 1 gives

(1 + 2p)a1 + a−1 = 0 . (126)

Since a1 = 0, it follows that a1 = 0. We now rewrite (125) as

an = − 1

n(n + 2p)
an−2, n ≥ 2, (127)

This recursion relation implies that

a1 = a3 = a5 = · · · = 0 . (128)

Let us now examine the first few even-indexed coefficients.

1. n = 2: a2 = − 1

2(2 + 2p)
a0 = − 1

22(1 + p)
.

2. n = 4: a4 = − 1

4(4 + 2p)
a2 =

1

25(1 + p)(2 + p)
.

3. n = 6: a6 = − 1

6(6 + 2p)
a2 = − 1

3 · 27(1 + p)(2 + p)(3 + p)
.
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There is a pattern here. In general, the Frobenius series is given by (see page 40 of the AMATH

351 Course Notes by J. Wainwright)

y1(x) = a0x
p

[

1 +
∞

∑

k=1

(−1)k

22kk!(1 + p) · · · (k + p)
x2k

]

, (129)

with a0 arbitrary. The series converges for all x ∈ R.

Bessel functions Jn(x) of the first kind of integer order

In the case that p = n = 0, 1, 2, · · · , the convention is to set the constant a0 to be

a0 =
1

2nn!
, (130)

to produce the (official) Bessel functions of the first kind of order n, denoted as Jn(x). After

some algebra, the Frobenius series obtained earlier becomes

Jn(x) =
(x

2

)n
∞

∑

k=0

(−1)k

k!(k + n)!

(x

2

)2k

. (131)

We write out the first few terms of the cases n = 0 and n = 1, which occur in many applications,

J0(x) = 1 − x2

4
+

x4

64
− · · · (132)

J1(x) =
x

2
− x3

16
+

x5

384
− · · · . (133)

The graphs of these two functions are shown in the figure below. (They were computed

from the power series expansions.) One can also show from the power series expansions that

J ′

0(x) = −J1(x), (134)

which implies that the zeros of J1 are critical points, i.e. local maxima/minima, of J0.

Bessel functions Jp(x) of the first kind for arbitrary order

To define these standard functions, one assigns the value

a0 =
1

2pΓ(p + 1)
, (135)
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where Γ(x) denotes the Gamma function, defined as

Γ(x) =

∫

∞

0

e−ttx−1dt. (136)

The Gamma function is discussed in the Course Notes on pages 42-43. Its most important

properties are

1. Γ(x + 1) = xΓ(x) for all x > 0.

2. Γ(n + 1) = n! for n = 0, 1, 2, · · · .

From the above, we could write that

Γ(x + 1) = x! for x ≥ 0 , (137)

where the function f(x) = x! for x ≥ 0 is a continuous interpolation of the factorial function

f(n) = n! defined on the nonnegative integers. One noteworthy value of the Gamma function

is (see p. 42 of AMATH 231 Course Notes by J. Wainwright)

Γ

(

1

2

)

=
√

π . (138)

The Bessel functions Jp(x) are then given by

Jp(x) =
(x

2

)p
∞

∑

k=0

(−1)k

k! Γ(k + p + 1)

(x

2

)2k

. (139)
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In the special case, p = n, integer, the formulas for Jn(x) are obtained. This follows from the

fact that Γ(k + n + 1) = (k + n)!.

From a closer look at Eq. (139), one might expect that there might be some kind of con-

tinuity property of the functions Jp(x) with respect to the parameter p, i.e., small changes in

p will produce small changes in the function Jp(x). This is shown in the figure below where

the graphs of two Bessel functions with p values fairly close to each other, i.e., p1 = 0.2 and

p2 = 0.3, are plotted. Each function may be viewed as a small perturbation of the other.
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Asymptotic behaviour of Jp(x) as x → 0+ and x → ∞

The above series expansion shows that

Jp(x) ≈ 1

Γ(p + 1)

(x

2

)p

, as x → 0+. (140)

Near the beginning of this lecture, cf. Eq. (116), we showed that solutions to Bessel’s equation

behave asymptotically as

y(x) ≈ 1√
x

(c1 sin x + c2 cos x), as x → ∞. (141)

The latter asymptotic properties are very important in quantum mechanics when the scattering

of particles by other particles is studied.
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Some identities satisfied by the Jp(x)

The Bessel functions of the first kind satisfy some interesting identities that can be very useful

in practical calculations. We simply state them here and refer the reader to the Course Notes,

pp. 43-44:

Jp+1(x) =
p

x
Jp(x) − J ′

p(x), (142)

Jp−1(x) =
p

x
Jp(x) + J ′

p(x), (143)

Jp+1(x) + Jp−1(x) =
2p

x
Jp(x). (144)

These are examples of three-term recurrence relations, a general feature of special functions

that include the Bessel functions, Legendre functions, Hermite functions, Laguerre functions.

These recurrence relations play an important role in applications, including “selection rules” in

quantum mechanics which tell which types of transitions from one energy state to another are

allowed.

Bessel functions Jn+ 1

2

(x), n an integer

In these special cases, the Bessel functions can be expressed in terms of trigonometric functions.

And in spite of the fact that r1 = n + 1
2

and r2 = −r1 so that 2p = 2n + 1 is an integer,

the Frobenius method can produce two linearly independent solutions. Here we present the

following results and refer the reader to page 46 of the Course Notes:

J 1

2

(x) =

(

2

πx

)1/2

sin x, (145)

J
−

1

2

(x) =

(

2

πx

)1/2

cos x, x > 0. (146)

You have already seen these results for p =
1

2
, but in “unscaled” form, in Eq. (111).

Bessel functions Jp(x), p is not an integer

In this case, we can replace p by −p in (139) to obtain a second solution:
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J−p(x) =
(x

2

)

−p
∞

∑

k=0

(−1)k

k!Γ(k − p + 1)

(x

2

)2k

. (147)

Note that

lim
x→0+

Jp(x) = 0 , lim
x→0+

J−p(x) = +∞ , (148)

which implies that Jp(x) and J−p(x) are linearly independent (as expected). The general

solution of Bessel’s equation is then

y(x) = c1Jp(x) + c2J−p(x) . (149)

Bessel functions of the second kind, Yp(x)

In the case that p is an integer p = n ≥ 0, we have been able to construct only one class of

solution to Bessel’s equation, the Bessel functions Jp(x) of the first kind. One can use reduction

of order to construct a second, linearly independent solution.

There is a standard class of such solutions, known as Bessel functions of the second kind,

and denoted as Yn(x). The most noteworthy property that distinguishes them from the Bessel

functions Jp(x) of the first kind is that they diverge as x → 0+:

Yn(x) → −∞ as x → 0+. (150)

In particular,

Y0(x) ≈ 2

π
ln

(x

2

)

as x → 0+, (151)

Y1(x) ≈ −2

π
x−1 as x → 0+. (152)

These functions are discussed in a little more detail in the Course Notes, Section 1.5.2, pp.

46-50. The graphs of Y0(x) and Y1(x) are sketched in Figure 1.8 on page 49.

Summary: General solutions of the Bessel equation

If p is not an integer, then the general solution of Bessel’s DE of order p can be written in the

form

y(x) = c1Jp(x) + c2J−p(x). (153)
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If p = n, a positive integer, then the general solution has the form

y(x) = c1Jn(x) + c2Yn(x). (154)

In both cases, the second, linearly independent solutions, J−p(x) or Yn(x), are not continuous

at x = 0. This is the price that is paid for constructing solutions about singular points. In

many physical applications, it is necessary that the solution y(x) be finite at x = 0, which will

necessitate that c2 = 0.

A remarkable property of Bessel’s DE: Many DEs can be transformed

into it

Here we simply mention a result that is discussed in more detail in the AMATH 351 Course

Notes by J. Wainwright, Section 1.1.3, pp. 7-9. It is shown (Example 1.1) that any solution of

the following DE in y(x),

x2y′′ + (1 + 2c)xy′ + (a2x2b + c2 − b2p2)y = 0 , (155)

where a, b and c are constants, is of the form

y(x) = x−cw
(a

b
xb

)

, (156)

where w(z) is a solution of Bessel’s DE,

z2w′′ + zw′ + (z2 − p2)w = 0 . (157)

In Problem Set 1, Question 4 of the same Course Notes (p. 196), you are asked to prove that

any solution of the following DE in y(x),

x2y′′ + (1 + 2cx)xy′ + [(a2 + c2)x2 + cx − p2]y = 0 , (158)

is of the form

y(x) = e−cxw(ax) , (159)

where w(z) is a solution of Bessel’s DE in (157).
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